期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
混合正则化模型的交替迭代原理与图像恢复 被引量:1
1
作者 李旭超 李玉叶 《科学技术与工程》 北大核心 2017年第7期77-84,共8页
由有界变差函数的半范数(TV)描述的正则项,在图像恢复过程中,对于图像的纹理部分,容易造成细节丢失;对于图像的卡通部分,容易产生阶梯效应;为克服此缺点,提出一种混合卡通-纹理正则化模型(hybrid cartoon texture regularization model,... 由有界变差函数的半范数(TV)描述的正则项,在图像恢复过程中,对于图像的纹理部分,容易造成细节丢失;对于图像的卡通部分,容易产生阶梯效应;为克服此缺点,提出一种混合卡通-纹理正则化模型(hybrid cartoon texture regularization model,HCTRM)和交替迭代算法。首先,对受系统和噪声模糊的图像,用Kullback-Leibler函数描述拟合项;对于图像的卡通部分用分数阶TV的半范数来描述,纹理部分用紧框架域L_1范数来描述,建立HCTRM。其次,分析HCTRM解的存在性和唯一性。再次,引入辅助变量,将HCTRM转化为标准表达式,应用交替方向乘子算法(ADMM),将HCTRM分解为2个大的子问题。最后,将每个大的子问题,再分裂为2个小的容易处理的子问题,形成快速交替迭代算法。针对TV的半范数作为正则项,容易消除图像的纹理,且产生阶梯效应的缺点,提出一种HCTRM和交替迭代算法。仿真表明,能有效地恢复非平稳区域的纹理,克服在平稳区域产生的阶梯效应,取得较高的峰值信噪比和结构相似测度。 展开更多
关键词 卡通-纹理 混合正则化模型 交替迭代 图像恢复
在线阅读 下载PDF
基于RGMM的离散基因表达数据关联规则挖掘
2
作者 黄睿 《计算机应用与软件》 CSCD 北大核心 2014年第9期191-193,共3页
由于具有良好的可解释性,关联规则在基于疾病诊断的基因表达数据中表现出优越性,然而,高维基因表达数据中的大量规则阻碍了它的应用。为了缓解这个问题,提出正则化高斯混合模型RGMM(Regularized Gaussian Mixture Model),根据最小描述... 由于具有良好的可解释性,关联规则在基于疾病诊断的基因表达数据中表现出优越性,然而,高维基因表达数据中的大量规则阻碍了它的应用。为了缓解这个问题,提出正则化高斯混合模型RGMM(Regularized Gaussian Mixture Model),根据最小描述长度框架,挖掘离散化模型复杂度及信息丢失准则,通过离散化连续的基因表达数据,缓解监督方法中的过拟合现象,并且改善无监督方法中的一些缺点。在六个分类数据集上的大量实验验证了所提方法的有效性。实验结果表明,与其他几种最先进的方法相比,所提的RGMM方法在现实的基因表达数据集中更具实用性。 展开更多
关键词 离散 基因表达数据 正则高斯混合模型 关联规则 数据挖掘
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部