期刊文献+
共找到273篇文章
< 1 2 14 >
每页显示 20 50 100
基于核主成分分析和支持向量回归机的红外光谱多组分混合气体定量分析 被引量:15
1
作者 郝惠敏 汤晓君 +2 位作者 白鹏 刘君华 朱长纯 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第6期1286-1289,共4页
提出了一种核主成分分析(KPCA)特征提取结合支持向量回归机(SVR)的红外光谱混合气体组分定量分析新方法。首先将特征吸收谱线严重重叠的混合气体光谱通过非线性变换映射到高维特征空间,然后在特征空间中再利用主成分分析法提取主成分,... 提出了一种核主成分分析(KPCA)特征提取结合支持向量回归机(SVR)的红外光谱混合气体组分定量分析新方法。首先将特征吸收谱线严重重叠的混合气体光谱通过非线性变换映射到高维特征空间,然后在特征空间中再利用主成分分析法提取主成分,提取出的主成分作为SVR的输入建立校正模型,实现了甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷以及正戊烷七种组组分特征吸收光谱严重重叠的混合气体的定量分析。用KPCA-SVR所建模型对未知浓度混合气体的七种组分预测的RMSE(φ×10-6)较仅用SVR模型预测的RMSE(φ×10-6)降低了一个数量级。结果表明,核主成分分析法具有很强的非线性特征提取能力,可以充分利用全光谱数据并有效地消除光谱数据噪声,降低数据维数,与支持向量回归机结合可以提高红外光谱分析的精度,缩短模型计算时间,是一种有效的红外光谱分析新方法。 展开更多
关键词 主成分分析 支持向量回归 校正模型 FTIR 定量分析
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
2
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合函数 支持向量及其变体 超参数优化
在线阅读 下载PDF
求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法 被引量:9
3
作者 周晓剑 马义中 +2 位作者 朱嘉钢 刘利平 汪建均 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第9期1178-1184,共7页
序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的... 序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的前提下可使非半正定Huber-SVR能够达到比较理想的回归精度,因而具有一定的理论意义和实用价值. 展开更多
关键词 支持向量 非半正定 序列最小最优化算法 Huber-支持向量回归
在线阅读 下载PDF
一种新的混合核函数支持向量机 被引量:15
4
作者 刘明 周水生 吴慧 《计算机应用》 CSCD 北大核心 2009年第B12期167-168,206,共3页
针对单核函数支持向量机性能的局限性问题,提出将sigmoid核函数与高斯核函数组成一种新的混合核函数支持向量机。高斯核是典型的局部核;sigmoid核在神经网络中被证明具有良好的全局分类性能。新混合核函数结合二者的优点,其支持向量机... 针对单核函数支持向量机性能的局限性问题,提出将sigmoid核函数与高斯核函数组成一种新的混合核函数支持向量机。高斯核是典型的局部核;sigmoid核在神经网络中被证明具有良好的全局分类性能。新混合核函数结合二者的优点,其支持向量机的分类性能优于由单核函数构成的支持向量机,实验结果表明该方法的有效性。 展开更多
关键词 支持向量 混合 sigmoid 高斯 全局 局部
在线阅读 下载PDF
基于混合核函数的支持向量机 被引量:44
5
作者 邬啸 魏延 吴瑕 《重庆理工大学学报(自然科学)》 CAS 2011年第10期66-70,共5页
支持向量机采用核函数来实现从原输入空间到一个高维空间的非线性映射,而由于普通核函数各有其利弊,为了得到学习能力和泛化性能都很强的核函数,研究了2种支持向量机核函数:全局核函数(线性核函数)和局部核函数(RBF核函数),提出了组合... 支持向量机采用核函数来实现从原输入空间到一个高维空间的非线性映射,而由于普通核函数各有其利弊,为了得到学习能力和泛化性能都很强的核函数,研究了2种支持向量机核函数:全局核函数(线性核函数)和局部核函数(RBF核函数),提出了组合核函数的支持向量机。与普通核函数构造的支持向量机进行了比较实验。结果表明,组合核函数的支持向量机性能明显优于由普通核函数构造的支持向量机。 展开更多
关键词 支持向量 混合函数 局部函数 全局函数
在线阅读 下载PDF
混合核函数支持向量机的磨矿粒度预测模型 被引量:10
6
作者 王新华 桂卫华 +1 位作者 王雅琳 阳春华 《计算机工程与应用》 CSCD 北大核心 2010年第12期207-209,214,共4页
选矿厂磨矿粒度是影响精矿品位和回收率的重要因素。针对目前无法对磨矿粒度进行实时有效检测问题,提出了一种基于支持向量机的磨矿粒度预测模型。通过对现有支持向量机建模方法分析比较,选择了新型的混合核支持向量机作为预测模型的建... 选矿厂磨矿粒度是影响精矿品位和回收率的重要因素。针对目前无法对磨矿粒度进行实时有效检测问题,提出了一种基于支持向量机的磨矿粒度预测模型。通过对现有支持向量机建模方法分析比较,选择了新型的混合核支持向量机作为预测模型的建模工具,同时为了解决有效选择混合核参数问题,提出利用遗传算法对模型结构参数进行优化。仿真结果表明,用该方法建立的磨矿粒度预测模型优于基于RBF核支持向量机建立的该预测模型,其具有较好的逼近性能和泛化性能及更高的预测精度。 展开更多
关键词 磨矿粒度 支持向量 混合 遗传算法
在线阅读 下载PDF
基于多核支持向量机的高光谱影像非线性混合像元分解 被引量:13
7
作者 谭熊 余旭初 +1 位作者 张鹏强 秦进春 《光学精密工程》 EI CAS CSCD 北大核心 2014年第7期1912-1920,共9页
针对基于线性模型分解高光谱影像混合像元分解精度低,而非线性模型难以建立等问题,提出了利用多核支持向量机(MKSVM)的后验概率进行高光谱影像非线性混合像元分解的方法。该方法在支持向量机的基础上,以线性加权组合核函数代替单核函数... 针对基于线性模型分解高光谱影像混合像元分解精度低,而非线性模型难以建立等问题,提出了利用多核支持向量机(MKSVM)的后验概率进行高光谱影像非线性混合像元分解的方法。该方法在支持向量机的基础上,以线性加权组合核函数代替单核函数,采用简单多核学习方法迭代解算权系数来实现分类。然后,通过S型函数将分类器输出值转化为概率;将两两配对概率转换为多类后验概率。最后,利用后验概率实现高光谱影像的非线性混合像元分解。采用该方法对两组推帚式超光谱成像仪(PHI)的高光谱影像进行了对比实验,结果表明:该方法的分类精度分别提高到95.62%和91.51%,均方根误差(RMSE)最小分别为11.15%和7.55%,均小于15%。实验结果显示提出的方法基本消除了混合像元对高光谱影像分类的影响,提高了分类精度。 展开更多
关键词 混合像元分解 非线性分解 支持向量 高光谱影像
在线阅读 下载PDF
一种混合核函数支持向量机算法 被引量:21
8
作者 颜根廷 马广富 肖余之 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第11期1704-1706,共3页
提出一种基于混合核函数的支持向量机算法.首先证明了常用核函数的非负线性组合也是满足Mercer条件的核函数.然后通过最小化衡量二次损失函数支持向量机泛化能力的RM界来进行各子核函数参数、混合核函数组合系数以及惩罚系数的选取.仿... 提出一种基于混合核函数的支持向量机算法.首先证明了常用核函数的非负线性组合也是满足Mercer条件的核函数.然后通过最小化衡量二次损失函数支持向量机泛化能力的RM界来进行各子核函数参数、混合核函数组合系数以及惩罚系数的选取.仿真实验表明,基于混合核函数的支持向量机的泛化性能优于基于单一核函数的支持向量机. 展开更多
关键词 支持向量 Mercer条件 混合函数 RM界
在线阅读 下载PDF
混合核函数对支持向量机分类性能的改进 被引量:4
9
作者 朱树先 张仁杰 郑刚 《上海理工大学学报》 CAS 北大核心 2009年第2期173-176,共4页
通过对核矩阵的计算和研究,从理论上对常用的核函数进行了评估.在此基础上,通过实验仿真证实了通过优选后的核函数所组成的混合核函数对支持向量机分类性能的改善,为核函数的选择提供了参考.
关键词 支持向量 函数 模型选择 矩阵 混合函数
在线阅读 下载PDF
基于混合核支持向量机的金融时间序列分析 被引量:10
10
作者 张拥华 曾凡仔 《计算机工程与应用》 CSCD 北大核心 2008年第19期220-222,共3页
核函数是支持向量机(SVM)的重要部分,它直接影响到SVM的各项性能。当前SVM在金融时间序列分析中,基本上采用高斯径向核函数(RBF),其次才是多项式核函数。然而,每种核函数都有它的优势和不足,整合两个或多个核函数对于学习能力和泛化能... 核函数是支持向量机(SVM)的重要部分,它直接影响到SVM的各项性能。当前SVM在金融时间序列分析中,基本上采用高斯径向核函数(RBF),其次才是多项式核函数。然而,每种核函数都有它的优势和不足,整合两个或多个核函数对于学习能力和泛化能力的提高是一个有效的途径。采用高斯径向核函数与多项式核函数的混合核函数运用于金融时间序列预测中,且与其单个核函数的支持向量机的实验结果进行了比较。结果表明,混合核函数具有更好的性能。 展开更多
关键词 支持向量 金融时间序列 混合函数
在线阅读 下载PDF
一种改进的再生核支持向量机回归模型 被引量:2
11
作者 徐立祥 罗斌 +1 位作者 谢进 段宝彬 《计算机工程与应用》 CSCD 北大核心 2011年第24期100-102,共3页
基于支持向量机核函数的条件,将Sobolev Hilbert空间的再生核函数进行改进,给出一种新的支持向量机核函数,并提出一种改进的最小二乘再生核支持向量机的回归模型,该回归模型的参数被减少,且仿真实验结果表明:最小二乘支持向量机的核函... 基于支持向量机核函数的条件,将Sobolev Hilbert空间的再生核函数进行改进,给出一种新的支持向量机核函数,并提出一种改进的最小二乘再生核支持向量机的回归模型,该回归模型的参数被减少,且仿真实验结果表明:最小二乘支持向量机的核函数采用改进的再生核函数是可行的,改进后的再生核函数不仅具有核函数的非线性映射特征,而且也继承了该再生核函数对非线性逐级精细逼近的特征,回归的效果比一般的核函数更为细腻。 展开更多
关键词 支持向量 函数 再生 信号回归
在线阅读 下载PDF
混合核函数在线支持向量机在甲醇合成中的应用 被引量:3
12
作者 王建国 武丽明 +1 位作者 张文兴 江旭 《机械设计与制造》 北大核心 2014年第8期217-219,共3页
针对甲醇生产过程中高度的非线性和时变性,采用精确在线支持向量机模型预测粗甲醇的转化率。在线支持向量机模型一般采用单一的核函数,混合核函数可以弥补单一核函数的不足,提高模型的泛化能力和学习能力。为了使模型的预测精度进一步提... 针对甲醇生产过程中高度的非线性和时变性,采用精确在线支持向量机模型预测粗甲醇的转化率。在线支持向量机模型一般采用单一的核函数,混合核函数可以弥补单一核函数的不足,提高模型的泛化能力和学习能力。为了使模型的预测精度进一步提高,在混合核函数的基础上运用在线误差校正方法。将基于混合核函数和误差校正的在线支持向量机建模方法应用在煤制甲醇数据上,通过与传统支持向量机和准确在线支持向量机模型对比,仿真实验和分析结果表明改进的在线支持向量机模型比传统支持向量机预测精度高,能够实现粗甲醇转化率的实时预测,从而更好的指导甲醇生产。 展开更多
关键词 在线支持向量回归 混合函数 误差校正 粗甲醇转化率
在线阅读 下载PDF
基于混合核函数支持向量机和遗传算法的人脸识别 被引量:6
13
作者 任彧 梅盛鑫 《计算机应用与软件》 CSCD 2011年第4期260-263,共4页
提出了一种基于混合核函数支持向量机和遗传算法的识别方法,用于人脸识别。该方法结合了支持向量机的学习性能和遗传算法的寻优性能,与传统的方法相比,具有速度快、误差少、效率高的特点,在实验中能够较精确地对人脸进行识别。
关键词 混合函数 支持向量 遗传算法 人脸识别
在线阅读 下载PDF
基于数据依赖核支持向量机回归的风速预测模型 被引量:2
14
作者 王定成 倪郁佳 +1 位作者 陈北京 曹智丽 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期15-20,共6页
针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Ke... 针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(Data Dependent Kernel-SVR,DDK-SVR)方法.将该方法用于风速预测中,建立DDK-SVR风速预测模型,并将预测结果与传统支持向量机、神经网络方法进行对比.结果表明,DDK-SVR方法具有更高的预测精度. 展开更多
关键词 风速预测 数据依赖 支持向量回归
在线阅读 下载PDF
基于核路径算法的支持向量回归机参数选择 被引量:2
15
作者 杨慧中 王芳 《控制工程》 CSCD 北大核心 2009年第1期23-26,87,共5页
参数选择是支持向量机研究领域的重要问题。针对核参数的选择,提出一种基于二分法的核参数解路径算法。由于解为核参数的非线性光滑函数,该算法随着参数的更新,可以在已有参数得出的解的基础上通过更新公式进行推导计算,从而求得当前参... 参数选择是支持向量机研究领域的重要问题。针对核参数的选择,提出一种基于二分法的核参数解路径算法。由于解为核参数的非线性光滑函数,该算法随着参数的更新,可以在已有参数得出的解的基础上通过更新公式进行推导计算,从而求得当前参数所对应的解,其目标函数的极值所对应的参数值即为最优参数解。该算法可以快速地求得最优参数。将该方法应用于双酚A生产过程的质量指标软测量建模,仿真结果表明了该算法的可行性和有效性。 展开更多
关键词 支持向量回归(SVR) 参数选择 路径算法 软测量
在线阅读 下载PDF
对支持向量机混合核函数方法的再评估 被引量:7
16
作者 魏瑾瑞 《统计研究》 CSSCI 北大核心 2015年第2期90-96,共7页
混合核函数方法并没有解决核函数的选择问题,只是将问题等价转换为权重参数的选择。同时该方法还需要分别对两个核函数确定参数,大大增加了算法的复杂程度,限制了支持向量机的泛化能力。事实上,调节核函数的参数对分类结果的影响要远大... 混合核函数方法并没有解决核函数的选择问题,只是将问题等价转换为权重参数的选择。同时该方法还需要分别对两个核函数确定参数,大大增加了算法的复杂程度,限制了支持向量机的泛化能力。事实上,调节核函数的参数对分类结果的影响要远大于选择什么类型的核函数,因此混合核函数方法实属"避轻就重"。实证分析表明,不同核函数对应的共同支持向量比例很高,存在很大程度的一致性,线性组合的意义并不大,这也是混合核函数方法无法有效提升分类性能的一个重要原因。 展开更多
关键词 支持向量 混合函数
在线阅读 下载PDF
混合核支持向量回归及对社会用电量的预测 被引量:3
17
作者 齐德昱 葛超 葛韧 《重庆工学院学报(自然科学版)》 2009年第10期50-52,共3页
介绍了混合核支持向量回归的方法,并运用该方法对广州市每月的全社会用电量进行了预测.结果表明,混合核支持向量回归的方法具有较好的预测性能,有一定的实用价值.
关键词 支持向量回归 混合 全社会用电量
在线阅读 下载PDF
混合损失函数支持向量回归机的性能研究 被引量:6
18
作者 李小光 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期210-214,共5页
目的研究混合损失函数的支持向量回归机。方法综合一次ε-不敏感损失函数和二次ε-不敏感损失函数的部分性质,得到一种混合损失函数。结果同一般的一次ε-不敏感损失函数支持向量回归机和二次ε-不敏感损失函数支持向量回归机相比较,对... 目的研究混合损失函数的支持向量回归机。方法综合一次ε-不敏感损失函数和二次ε-不敏感损失函数的部分性质,得到一种混合损失函数。结果同一般的一次ε-不敏感损失函数支持向量回归机和二次ε-不敏感损失函数支持向量回归机相比较,对数据的波动性不大,噪声不明显的数据,混合损失函数支持向量回归机的优势并不显著。结论该混合损失函数支持向量回归机对含有高斯强噪声和一些具有振幅较大的异常点所形成的数据具有较高的准确率。 展开更多
关键词 一次ε-不敏感损失函数 二次ε-不敏感损失函数 混合损失函数 支持向量回归
在线阅读 下载PDF
基于多核支持向量机的混合扰动波形辨识算法研究 被引量:13
19
作者 张明龙 张振宇 +3 位作者 罗翔 高源 李宽宏 朱珂 《电力系统保护与控制》 EI CSCD 北大核心 2022年第15期43-49,共7页
针对特征提取手段自身局限性导致的扰动典型特征间边缘重叠对混和扰动辨识的影响,提出一种基于多域特征优选的多核支持向量机辨识算法。首先,利用多种特征提取手段获取混和扰动多域典型特征。其次,为考虑高维特征与目标类别的相关性和... 针对特征提取手段自身局限性导致的扰动典型特征间边缘重叠对混和扰动辨识的影响,提出一种基于多域特征优选的多核支持向量机辨识算法。首先,利用多种特征提取手段获取混和扰动多域典型特征。其次,为考虑高维特征与目标类别的相关性和度量尺度的规范化,利用改进的最大相关最小冗余准则优选用于辨识的关键特征子集,进而利用计及半径信息的多核SVM来辨识混合扰动波形。仿真结果表明,所提辨识算法能够克服混合扰动特征空间模糊对辨识精度的影响,受噪声影响小,稳定性好。 展开更多
关键词 混合扰动 多域 支持向量 边缘重叠 配电网
在线阅读 下载PDF
基于改进自适应粒子群算法的混合核函数最小二乘支持向量机大坝变形预测 被引量:11
20
作者 梁耀东 栾元重 +2 位作者 刘方雨 纪赵磊 庄艳 《科学技术与工程》 北大核心 2021年第1期47-52,共6页
针对大坝变形影响因素的复杂性以及监测数据的非线性、随机波动大和预测难度大等问题,提出一种改进自适应粒子群(particle swarm,PSO)算法的混合核函数最小二乘支持向量机(least squares support vector machine,LSSVM)模型,实现了大坝... 针对大坝变形影响因素的复杂性以及监测数据的非线性、随机波动大和预测难度大等问题,提出一种改进自适应粒子群(particle swarm,PSO)算法的混合核函数最小二乘支持向量机(least squares support vector machine,LSSVM)模型,实现了大坝水平变形的时间序列预测方法。基于Mercer理论,将多项式核函数和高斯核函数进行线性组合,构建混合核函数,作为LSSVM模型的核函数,并以特征因子与大坝变形间的相互联系为基础,采用动态自适应惯性权重的PSO算法,对混合核函数的LSSVM模型进行参数寻优,以确保建立最佳LSSVM预测模型。将模型应用于丰满大坝,并与传统多项式核函数和传统高斯核函数的LSSVM模型进行对比仿真实验,对所提方法的有效性和准确性进行验证评估。结果表明,该模型在预测精度上有了明显提高,预测性能尤佳。可见改进自适应粒子群的混合核函数LSSVM模型对大坝变形的时间序列预测有良好的实用价值。 展开更多
关键词 混合函数 大坝变形预测 最小二乘支持向量(LSsvm) 自适应粒子群算法 水平位移
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部