期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mixed KPCA结合纹理特征的SVM盐碱土信息提取 被引量:2
1
作者 崔林林 罗毅 +1 位作者 包安明 李春轩 《计算机工程与应用》 CSCD 2012年第27期211-216,共6页
核函数是核主成分分析(Kernel Principal Component Analysis,KPCA)的核心,目前使用的核函数都是单一核函数。尝试通过将光谱角径向基核函数(Spectral Angle Radial Basis Function,SA-RBF)与RBF组合形成混合核函数。在研究中,利用基于... 核函数是核主成分分析(Kernel Principal Component Analysis,KPCA)的核心,目前使用的核函数都是单一核函数。尝试通过将光谱角径向基核函数(Spectral Angle Radial Basis Function,SA-RBF)与RBF组合形成混合核函数。在研究中,利用基于该混合核函数的KPCA进行特征提取,将其光谱特征波段和纹理特征相结合用于盐碱土的SVM分类,将分类结果与其他SVM分类进行比较,结果表明:该方法优于其他SVM方法,能有效提取玛纳斯河流域绿洲区的盐碱土专题信息,分类精度是89.000%,kappa系数是0.876。 展开更多
关键词 混合核主成分分析 纹理特征分析 支持向量机 盐碱土
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部