期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力模型
1
作者 李启明 张鹏飞 +1 位作者 喻泽成 余波 《工程科学与技术》 北大核心 2025年第1期287-295,共9页
针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型。首先,基于核函数相加性和自动相关性,构造出一种新... 针对钢筋混凝土(RC)柱抗剪承载力传统预测模型的非线性逼近能力不足且无法合理描述不确定性所存在的缺陷,提出一种基于各向异性混合核函数高斯过程回归的RC柱概率抗剪承载力预测模型。首先,基于核函数相加性和自动相关性,构造出一种新型的各向异性混合核函数;然后,结合高斯过程回归原理和各向异性混合核函数,建立了RC柱的概率抗剪承载力模型;进而采用极大似然估计法,确定了RC柱概率抗剪承载力模型的超参数;最后,基于91组剪切破坏RC柱的试验数据,通过与传统核函数形式和传统模型进行对比分析,验证了该模型的有效性。结果表明:与传统核函数相比,各向异性混合核函数的确定性预测指标均方根误差R_(MSE)和平均绝对误差M_(AE)分别降低约16%和19%,概率性预测值指标负对数预测密度N_(LPD)和平均标准化对数损失M_(SLL)分别降低约15%和23%;与传统机器学习模型相比,本文模型的均方根误差R_(MSE)和平均绝对误差M_(AE)分别降低约38%和39%;根据所提出的概率模型能够建立概率密度函数曲线和置信区间,从而合理描述抗剪承载力的不确定性并校准分析传统模型的预测精度。 展开更多
关键词 钢筋混凝土柱 各向异性混合核函数 高斯过程回归 概率抗剪承载力模型 不确定性
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:3
2
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习机 小波包变换 超参数优化
在线阅读 下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:3
3
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合核极限学习机 超参数优化
在线阅读 下载PDF
基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱预测研究
4
作者 任宝峰 祁卫国 +2 位作者 肖占云 撒兴涛 贾然 《承德石油高等专科学校学报》 CAS 2024年第3期9-13,共5页
为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化... 为解决人工鉴别真伪卷烟存在的预测精度低和主观性强的问题,提出一种基于贝叶斯优化混合核极限学习机的真伪卷烟拉曼光谱鉴别方法。该方法通过采用混合核函数提高模型的学习能力和泛化性能,并采用贝叶斯算法对混合核函数的参数进行优化,使其不仅有良好的局部搜索能力,同时也加强了全局搜索能力。将该方法应用于某品牌的真伪卷烟预测,试验结果表明:该模型拥有更好的预测精度,为真伪卷烟拉曼光谱预测提供了一种新思路。 展开更多
关键词 卷烟 真伪鉴别 拉曼光谱 混合核极限学习机 贝叶斯优化
在线阅读 下载PDF
基于混合核函数PSO-LSSVM的边坡变形预测 被引量:48
5
作者 郑志成 徐卫亚 +1 位作者 徐飞 刘造保 《岩土力学》 EI CAS CSCD 北大核心 2012年第5期1421-1426,共6页
支持向量机(SVM)的核函数类型和超参数对边坡位移时序预测的精度有重要影响。鉴于局部核函数学习能力强、泛化性能弱,而全局核函数泛化性能强、学习能力弱的矛盾,通过综合两类核函数各自优点构造了基于全局多项式核和高斯核的混合核函数... 支持向量机(SVM)的核函数类型和超参数对边坡位移时序预测的精度有重要影响。鉴于局部核函数学习能力强、泛化性能弱,而全局核函数泛化性能强、学习能力弱的矛盾,通过综合两类核函数各自优点构造了基于全局多项式核和高斯核的混合核函数,并引入粒子群算法(PSO)对最小二乘支持向量机(LSSVM)超参数进行全局寻优,提出了边坡位移时序预测的混合核函数PSO-LSSVM模型。将模型应用于锦屏一级水电站左岸岩石高边坡变形预测分析,并与传统核函数支持向量机预测结果进行对比分析。结果表明,该模型较传统方法在预测精度上有了明显提高,预测结果科学可靠,在边坡位移时序预测中具有良好的实际应用价值。 展开更多
关键词 边坡 边坡变形预测 最小二乘支持向量机 粒子群优化 混合核
在线阅读 下载PDF
基于量子遗传算法与多输出混合核相关向量机的堆石坝材料参数自适应反演研究 被引量:11
6
作者 马春辉 杨杰 +2 位作者 程琳 李婷 李雅琦 《岩土力学》 EI CAS CSCD 北大核心 2019年第6期2397-2406,共10页
为进一步提高堆石坝材料参数反演模型的计算精度与适用性,建立了基于量子遗传算法(QGA)与多输出混合核相关向量机(MMRVM)的自适应反演模型。通过引入混合核函数,使所构建的MMRVM能够高精度地模拟材料参数与大坝沉降间的复杂非线性关系,... 为进一步提高堆石坝材料参数反演模型的计算精度与适用性,建立了基于量子遗传算法(QGA)与多输出混合核相关向量机(MMRVM)的自适应反演模型。通过引入混合核函数,使所构建的MMRVM能够高精度地模拟材料参数与大坝沉降间的复杂非线性关系,从而代替耗时较长的有限元(FEM)计算。通过利用参数较固化的QGA优化确定MMRVM核参数,使反演模型具有自适应性。以实测沉降数据为依据,充分发挥QGA的全局搜索能力反演筑坝材料本构模型参数。在分析模型所需测点个数与信噪比对计算结果影响的基础上,通过公伯峡堆石坝应用实例证明:QGA-MMRVM可快速、精确地反演堆石坝筑坝材料本构模型参数,模型凭借其自适应性在实际工程中具有良好的应用前景和推广价值。 展开更多
关键词 堆石坝 参数反演 多输出混合核相关向量机 量子遗传算法 自适应
在线阅读 下载PDF
一种混合核函数支持向量机算法 被引量:21
7
作者 颜根廷 马广富 肖余之 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第11期1704-1706,共3页
提出一种基于混合核函数的支持向量机算法.首先证明了常用核函数的非负线性组合也是满足Mercer条件的核函数.然后通过最小化衡量二次损失函数支持向量机泛化能力的RM界来进行各子核函数参数、混合核函数组合系数以及惩罚系数的选取.仿... 提出一种基于混合核函数的支持向量机算法.首先证明了常用核函数的非负线性组合也是满足Mercer条件的核函数.然后通过最小化衡量二次损失函数支持向量机泛化能力的RM界来进行各子核函数参数、混合核函数组合系数以及惩罚系数的选取.仿真实验表明,基于混合核函数的支持向量机的泛化性能优于基于单一核函数的支持向量机. 展开更多
关键词 支持向量机 Mercer条件 混合核函数 RM界
在线阅读 下载PDF
一种基于混合核函数PSO_SVR的网络安全态势预测方法 被引量:4
8
作者 李方伟 罗嘉 +1 位作者 朱江 张海波 《微电子学与计算机》 CSCD 北大核心 2015年第12期110-115,共6页
为了对错综复杂的网络安全形势做出可靠的预测,提出了一种基于混合核函数PSO_SVR的网络安全态势预测模型.本模型针对基于传统支持向量机(SVR)的网络安全态势预测模型精度不够高,其核函数的选择及参数的设定没有统一标准的情况,构造了一... 为了对错综复杂的网络安全形势做出可靠的预测,提出了一种基于混合核函数PSO_SVR的网络安全态势预测模型.本模型针对基于传统支持向量机(SVR)的网络安全态势预测模型精度不够高,其核函数的选择及参数的设定没有统一标准的情况,构造了一种兼顾插值能力和外推性能的混合核函数.并引入粒子群算法(PSO)对基于混合核函数的SVR进行参数寻优,有效地提高了SVR预测能力.通过仿真实验表明,该模型相比与传统的网络安全态势预测方法,预测精度上更有保障. 展开更多
关键词 态势预测 网络安全 混合核函数 粒子群算法 支持向量机
在线阅读 下载PDF
尺度可调的混合核RBF网络 被引量:4
9
作者 付丽华 李宏伟 张猛 《电子学报》 EI CAS CSCD 北大核心 2011年第1期184-189,共6页
针对传统核模型中采用单一核函数的局限性,利用两个核函数的线性组合得到混合核.在RBF网络的训练中,采取正交最小二乘的方法进行逐步回归建模.在学习每个神经元参数时,首先,用全局k均值聚类法得到数据样本的聚类中心,然后对每一个聚类中... 针对传统核模型中采用单一核函数的局限性,利用两个核函数的线性组合得到混合核.在RBF网络的训练中,采取正交最小二乘的方法进行逐步回归建模.在学习每个神经元参数时,首先,用全局k均值聚类法得到数据样本的聚类中心,然后对每一个聚类中心,利用群搜索优化器搜索出最佳的尺度和混合核调节参数,误差最小的参数组合即为径向基函数参数.实验说明,新的RBF网络具有稀疏性好,泛化能力高等优点. 展开更多
关键词 混合核 RBF网络 群搜索优化器 正交最小二乘
在线阅读 下载PDF
基于KPCA与SVM的混合核交通流数据检测 被引量:6
10
作者 刘剑 刘丽华 赵悦 《沈阳建筑大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期921-928,共8页
目的针对当前交通流数据识别问题,提出基于KPCA与SVM的混合核交通流数据识别算法,以提高交通流数据识别准确率.方法运用KPCA对数据进行预处理,采用SVM训练分类模型,利用所训练的模型进行识别;以多轿厢电梯交通状态为对象,分别从交通流... 目的针对当前交通流数据识别问题,提出基于KPCA与SVM的混合核交通流数据识别算法,以提高交通流数据识别准确率.方法运用KPCA对数据进行预处理,采用SVM训练分类模型,利用所训练的模型进行识别;以多轿厢电梯交通状态为对象,分别从交通流数据识别分析和仿真实验两方面对所提方法的可行性与精确性进行验证.结果通过与SVM算法、BP神经网络算法进行对比,表明所提方法具有很强的通用性,能有效地预测出交通流,交通流数据识别的准确率达到97. 2%.结论笔者提出的基于KPCA与SVM的混合核交通流数据识别算法可以提高交通流数据识别的准确率,通用性较高,可以实现对目标的实时检测. 展开更多
关键词 模式识别 主成分分析 SVM 混合核 多轿厢电梯
在线阅读 下载PDF
混合核函数对支持向量机分类性能的改进 被引量:3
11
作者 朱树先 张仁杰 郑刚 《上海理工大学学报》 CAS 北大核心 2009年第2期173-176,共4页
通过对核矩阵的计算和研究,从理论上对常用的核函数进行了评估.在此基础上,通过实验仿真证实了通过优选后的核函数所组成的混合核函数对支持向量机分类性能的改善,为核函数的选择提供了参考.
关键词 支持向量机 函数 模型选择 矩阵 混合核函数
在线阅读 下载PDF
一种基于PSO的混合核支持向量机算法 被引量:3
12
作者 谌璐 贺兴时 +1 位作者 王芳妮 刘平丽 《西安工程大学学报》 CAS 2012年第6期815-819,共5页
支持向量机算法作为一种新的机器学习方法,在处理小样本分类问题上具有明显优势,但核函数和参数的选取的好坏直接影响支持向量机算法的性能.针对该问题,通过组合全局核函数和局部核函数的混合核函数方法,建立了基于粒子群算法的混合核... 支持向量机算法作为一种新的机器学习方法,在处理小样本分类问题上具有明显优势,但核函数和参数的选取的好坏直接影响支持向量机算法的性能.针对该问题,通过组合全局核函数和局部核函数的混合核函数方法,建立了基于粒子群算法的混合核支持向量机算法,并经过Matlab仿真实验,表明该改进算法较支持向量机算法具有更高的分类准确率和更好的学习及泛化能力. 展开更多
关键词 支持向量机 全局函数 局部函数 混合核函数 粒子群优化算法
在线阅读 下载PDF
混合核SVM模型在大坝位移预测中的应用 被引量:3
13
作者 许后磊 郑东健 《水力发电》 北大核心 2010年第4期85-88,共4页
针对大坝位移影响因素强、非线性特点和有效观测序列较短的情况提出了基于小生境遗传算法(NGA)混合核支持向量机大坝位移预测模型。核函数是支持向量机的核心部分,整合高斯和多项式两种核函数各自的优势提高了支持向量机的学习能力和泛... 针对大坝位移影响因素强、非线性特点和有效观测序列较短的情况提出了基于小生境遗传算法(NGA)混合核支持向量机大坝位移预测模型。核函数是支持向量机的核心部分,整合高斯和多项式两种核函数各自的优势提高了支持向量机的学习能力和泛化能力。采用主成分分析提取主成分,利用小生境遗传算法优化相关参数,某大坝连续观测数据的建模分析,证明了此种方法在大坝位移监测中应用的可行性和有效性。 展开更多
关键词 大坝 监测 小样本 支持向量机 混合核函数
在线阅读 下载PDF
基于成对约束的混合核函数KFCM图像分割算法 被引量:2
14
作者 吴术路 张俊峰 宋长新 《微电子学与计算机》 CSCD 北大核心 2010年第5期177-180,184,共5页
目前一些基于模糊核聚类的图像分割方法得到了大量研究,但难以有效地解决核方法中的参数合理选择问题,分割结果受到核参数人为主观选择的制约,不能达到分割的自适应性和良好性.通过提出一种基于成对约束的混合高斯核的方法来解决上述问... 目前一些基于模糊核聚类的图像分割方法得到了大量研究,但难以有效地解决核方法中的参数合理选择问题,分割结果受到核参数人为主观选择的制约,不能达到分割的自适应性和良好性.通过提出一种基于成对约束的混合高斯核的方法来解决上述问题.将传统的高斯核函数改进为混合核函数,该混合核函数由多个不同核参数的高斯核函数组成,对于该混合核函数采用基于成对约束的类别信息算法求解其中的核参数和权重系数,进而采用该混合核函数对图像进行聚类分割.实验结果表明:该方法成功解决了模糊核聚类中核参数的选择问题,使得聚类更具有自适应性,而且由该混合核参数得到的图像分割结果更为鲁棒和准确. 展开更多
关键词 图像分割 模糊聚类 混合核函数 成对约束
在线阅读 下载PDF
基于混合核函数的LSSVM网络入侵检测方法 被引量:16
15
作者 赵夫群 《现代电子技术》 北大核心 2015年第21期96-99,共4页
针对常规网络入侵检测算法检测率低、误报率高以及检测效率低下等问题,在此使用基于混合核函数的最小二乘支持向量机作为网络入侵检测模型的核心算法,使用粒子群优化算法对最小二乘支持向量机的各个参数进行优化。使用著名的KDD CUP99... 针对常规网络入侵检测算法检测率低、误报率高以及检测效率低下等问题,在此使用基于混合核函数的最小二乘支持向量机作为网络入侵检测模型的核心算法,使用粒子群优化算法对最小二乘支持向量机的各个参数进行优化。使用著名的KDD CUP99数据库中的部分数据样本对网络入侵检测模型进行训练和测试,以验证所提出网络入侵检测方法的性能。测试实验结果表明,提出的基于混合核函数的PSO-LSSVM算法具有更好的检测性能,提高了检测系统的检测率。 展开更多
关键词 最小二乘支持向量机 粒子群优化 网络入侵检测 混合核函数
在线阅读 下载PDF
基于混合核SPSO-SVM飞机复合材料健康监测研究 被引量:1
16
作者 朱兵 董恩生 +1 位作者 郭纲 宫剑 《现代防御技术》 北大核心 2016年第4期117-123,共7页
针对复合材料异常检测或健康监测的问题,提出了一种改进的粒子群算法训练混合核函数支持向量机,并用其进行复合材料健康状态辨别。通过有限元分析软件ANSYS14.5模拟碳纤维复合材料样板,获取了复合材料样板不同损伤类型的阻抗谱,提取了... 针对复合材料异常检测或健康监测的问题,提出了一种改进的粒子群算法训练混合核函数支持向量机,并用其进行复合材料健康状态辨别。通过有限元分析软件ANSYS14.5模拟碳纤维复合材料样板,获取了复合材料样板不同损伤类型的阻抗谱,提取了不同类型的阻抗特征参数,构建训练样本对混合核函数支持向量机进行训练,再将没有进行训练的阻抗特征数据送入到训练好的混合核函数支持向量机进行复合材料构件的健康状态辨别。结果表明:相比于Cole-Cole曲线分段各段电阻抗实部或虚部幅值的平均值,选取复合材料Cole-Cole曲线分段线性拟合斜率作为特征参数时,混合核函数支持向量机具有更高的健康状态辨识准确率。复合材料样板健康状态辨识仿真实验表明,该方法具有较高的健康辨识精度。 展开更多
关键词 电阻抗谱 自适应粒子群算法 混合核函数 支持向量机 复合材料 健康监测
在线阅读 下载PDF
一个混合核Hilbert型积分不等式和它的应用(英文) 被引量:4
17
作者 刘琼 《应用数学》 CSCD 北大核心 2015年第3期567-573,共7页
本文利用权函数方法和实分析技巧,引入Gamma函数和推广的Zeta函数联合刻划常数因子,得到一个混合核Hilbert型积分不等式和它的等价式,并证明它们的常数因子是最佳值.作为应用,通过选取特殊参数值获得一些有意义的结果.另一方面,改进参... 本文利用权函数方法和实分析技巧,引入Gamma函数和推广的Zeta函数联合刻划常数因子,得到一个混合核Hilbert型积分不等式和它的等价式,并证明它们的常数因子是最佳值.作为应用,通过选取特殊参数值获得一些有意义的结果.另一方面,改进参考文献中的一些相关结果. 展开更多
关键词 HILBERT型积分不等式 权函数 最佳常数因子 混合核 推广的Zeta函数
在线阅读 下载PDF
混合核函数支持向量机在系统建模中的应用 被引量:5
18
作者 陆荣秀 《华东交通大学学报》 2010年第2期63-67,共5页
混合核函数兼具了局部核函数和全局核函数的优点,并可通过权重因子调节它们对混合核函数的作用,取得较好的综合辨识效果。针对稀土萃取过程组分含量实时在线检测的难题,将基于混合核函数的支持向量机(SVM)算法用于稀土萃取过程组分含量... 混合核函数兼具了局部核函数和全局核函数的优点,并可通过权重因子调节它们对混合核函数的作用,取得较好的综合辨识效果。针对稀土萃取过程组分含量实时在线检测的难题,将基于混合核函数的支持向量机(SVM)算法用于稀土萃取过程组分含量建模。应用结果表明:基于混合核函数的组分含量软测量模型具有较好的模型拟合精度和满意的预测效果,能满足稀土萃取过程组分含量在线预估的要求。 展开更多
关键词 稀土萃取 混合核函数 支持向量机 建模
在线阅读 下载PDF
基于SVM混合核的遥感图像变化检测 被引量:2
19
作者 夏晨阳 石爱业 吴国宝 《信息技术》 2014年第8期38-41,共4页
针对由实际遥感地物类型难以确定导致的多光谱遥感影像变化检测精度较低的问题,提出一种基于SVM混合核的遥感图像变化检测。首先利用CVA算法构造差异影像,其次利用灰度共生矩阵提取差异影像的纹理特征与差异影像的灰度特征组成特征向量... 针对由实际遥感地物类型难以确定导致的多光谱遥感影像变化检测精度较低的问题,提出一种基于SVM混合核的遥感图像变化检测。首先利用CVA算法构造差异影像,其次利用灰度共生矩阵提取差异影像的纹理特征与差异影像的灰度特征组成特征向量,接着利用差异影像的直方图选择置信度高的训练样本,并利用构造的SVM混合核进行训练得到分类超平面,最后利用SVM混合核函数对差异影像进行二分类得到最后的变化检测结果。实际遥感数据验证结果表明,所构造的SVM混合核函数用于多光谱遥感影像变化检测中是可行、有效的。 展开更多
关键词 遥感图像处理 变化检测 SVM混合核函数 特征向量
在线阅读 下载PDF
混合核SVM财务欺诈识别 被引量:1
20
作者 邵朝 林路路 周谋 《西安邮电大学学报》 2017年第2期81-83,88,共4页
通过线性组合构造混合核函数,建立一种基于混合核学习的支持向量机财务欺诈检测模型。利用蜂群算法对混合核函数参数进行寻优,获取最佳参数,并对给定的训练样本进行学习,得出最佳输入输出关系,从而对财务数据进行识别检测。实例测试结... 通过线性组合构造混合核函数,建立一种基于混合核学习的支持向量机财务欺诈检测模型。利用蜂群算法对混合核函数参数进行寻优,获取最佳参数,并对给定的训练样本进行学习,得出最佳输入输出关系,从而对财务数据进行识别检测。实例测试结果表明,该模型与单核的支持向量机模型相比,识别精度和鲁棒性都有所提高。 展开更多
关键词 混合核函数 支持向量机 蜂群算法 财务欺诈
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部