针对考虑排放控制区(Emission Control Area, ECA)和多时间窗的班轮加油与货运收益优化问题,通过分析ECA内/外航路班轮燃油切换对燃油消耗的影响,结合各港口油价、各起讫港口对货运需求量及运费率差异,以班轮运输航次收益最大化为目标,...针对考虑排放控制区(Emission Control Area, ECA)和多时间窗的班轮加油与货运收益优化问题,通过分析ECA内/外航路班轮燃油切换对燃油消耗的影响,结合各港口油价、各起讫港口对货运需求量及运费率差异,以班轮运输航次收益最大化为目标,构建了混合整数非线性规划模型,并设计了分段线性割线逼近求解算法。以中国远洋海运集团有限公司的MEX航线为例,验证了模型和算法的适用性和有效性,算例结果显示,在考虑ECA和多时间窗的情况下,加油与货物装运联合优化可使班轮航次收益提高4.21%。研究表明:班轮公司与港口签署多时间窗合作协议,以及配置燃油消耗系数更小的新型班轮,不仅有利于班轮公司灵活地调整班轮航速和到/离港时间,且能够有效地降低燃油消耗,提高班轮航次货运收益。研究结论可为班轮公司制订ECA规则下的班轮运营决策提供有益的参考。展开更多
Based on the study of supply chain(SC) and SC optimization in engineering projects, a mixed integer nonlinear programming(MINLP) optimization model is developed to minimize the total SC cost for international petroche...Based on the study of supply chain(SC) and SC optimization in engineering projects, a mixed integer nonlinear programming(MINLP) optimization model is developed to minimize the total SC cost for international petrochemical engineering projects. A steam cracking project is selected and analyzed, from which typical SC characteristics in international engineering projects in the area of petrochemical industry are summarized. The MINLP model is therefore developed and applied to projects with detailed data. The optimization results are analyzed and compared by the MINLP model, indicating that they are appropriate to SC management practice in engineering projects, and are consistent with the optimal priceeffective strategy in procurement. As a result, the model could provide useful guidance to SC optimization of international engineering projects in petrochemical industry, and improve SC management by selecting more reliable and qualified partner enterprises in SC for the project.展开更多
文摘针对考虑排放控制区(Emission Control Area, ECA)和多时间窗的班轮加油与货运收益优化问题,通过分析ECA内/外航路班轮燃油切换对燃油消耗的影响,结合各港口油价、各起讫港口对货运需求量及运费率差异,以班轮运输航次收益最大化为目标,构建了混合整数非线性规划模型,并设计了分段线性割线逼近求解算法。以中国远洋海运集团有限公司的MEX航线为例,验证了模型和算法的适用性和有效性,算例结果显示,在考虑ECA和多时间窗的情况下,加油与货物装运联合优化可使班轮航次收益提高4.21%。研究表明:班轮公司与港口签署多时间窗合作协议,以及配置燃油消耗系数更小的新型班轮,不仅有利于班轮公司灵活地调整班轮航速和到/离港时间,且能够有效地降低燃油消耗,提高班轮航次货运收益。研究结论可为班轮公司制订ECA规则下的班轮运营决策提供有益的参考。
文摘Based on the study of supply chain(SC) and SC optimization in engineering projects, a mixed integer nonlinear programming(MINLP) optimization model is developed to minimize the total SC cost for international petrochemical engineering projects. A steam cracking project is selected and analyzed, from which typical SC characteristics in international engineering projects in the area of petrochemical industry are summarized. The MINLP model is therefore developed and applied to projects with detailed data. The optimization results are analyzed and compared by the MINLP model, indicating that they are appropriate to SC management practice in engineering projects, and are consistent with the optimal priceeffective strategy in procurement. As a result, the model could provide useful guidance to SC optimization of international engineering projects in petrochemical industry, and improve SC management by selecting more reliable and qualified partner enterprises in SC for the project.