期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于改进混合粒子群优化算法的多无人机协同围捕方法研究 被引量:5
1
作者 许诺 朱黔 +3 位作者 谢晓阳 喻涛 刘佳 刘思帆 《电光与控制》 CSCD 北大核心 2024年第9期1-5,共5页
针对多无人机协同围捕问题,在无人机运动学约束基础上,考虑各无人机应同时到达围捕位置,提出了多机协同围捕任务规划两层求解架构。在任务协调层通过改进混合粒子群优化方法,以各无人机同时到达指定围捕位置的最小时间为目标,优化调度... 针对多无人机协同围捕问题,在无人机运动学约束基础上,考虑各无人机应同时到达围捕位置,提出了多机协同围捕任务规划两层求解架构。在任务协调层通过改进混合粒子群优化方法,以各无人机同时到达指定围捕位置的最小时间为目标,优化调度给出多目标围捕方案;在航路规划层考虑无人机初始状态及运动学约束,通过Dubins曲线调整实现各无人机同时到达围捕位置。仿真结果表明了所提方法的有效性。 展开更多
关键词 多无人机 协同围捕 改进混合粒子优化
在线阅读 下载PDF
基于改进混合粒子群优化算法的移动节点部署研究 被引量:5
2
作者 朱正伟 刁小敏 +1 位作者 郭晓 刘晨 《传感器与微系统》 CSCD 2018年第6期150-152,157,共4页
在概率感知优化模型下,将无线传感器网络(WSNs)的覆盖率和移动节点的能耗作为多目标优化函数,通过改进混合粒子群优化算法(IM-HPSO)不断迭代,调整移动节点的最优位置,控制网络覆盖率最大化,同时减小移动距离,使得能耗最小化。仿真结果表... 在概率感知优化模型下,将无线传感器网络(WSNs)的覆盖率和移动节点的能耗作为多目标优化函数,通过改进混合粒子群优化算法(IM-HPSO)不断迭代,调整移动节点的最优位置,控制网络覆盖率最大化,同时减小移动距离,使得能耗最小化。仿真结果表明:IM-HPSO算法在覆盖率的提高、能耗的减少、网络生命周期的延长方面优于其他算法。 展开更多
关键词 移动节点 改进混合粒子优化算法 覆盖率 能耗 网络生命周期
在线阅读 下载PDF
改进混合粒子群算法的立体车库存取调度 被引量:10
3
作者 陈桂兰 奚宝华 杨兰英 《计算机工程与应用》 CSCD 北大核心 2019年第19期263-270,共8页
为了进一步提高立体车库存取效率,提出一种改进混合粒子群算法,应用于立体车库存取策略时间模型,寻找存取车最优时间和最优排序。该算法主要在粒子群算法前期引入遗传算法,改善全局搜索能力,后期引入模拟退火算法弥补其局部搜索能力弱... 为了进一步提高立体车库存取效率,提出一种改进混合粒子群算法,应用于立体车库存取策略时间模型,寻找存取车最优时间和最优排序。该算法主要在粒子群算法前期引入遗传算法,改善全局搜索能力,后期引入模拟退火算法弥补其局部搜索能力弱的特点。与目前应用于立体车库存取车调度的遗传算法相比,改进混合粒子群算法存取效率提高了24.5%~36.07%,并优于其他车库调度算法,提高了车库运营效率。 展开更多
关键词 立体车库调度优化 改进混合粒子算法 遗传算法 模拟退火算法
在线阅读 下载PDF
用改进粒子群神经网络混合算法优化特高压油气套管均压球结构 被引量:11
4
作者 张施令 彭宗仁 +2 位作者 胡伟 刘鹏 王浩然 《高电压技术》 EI CAS CSCD 北大核心 2012年第9期2195-2204,共10页
在我国特高压(ultra-high voltage,UHV)油气套管样机的试制过程中,套管尾部电场分布和均压球结构的优化是一项重要的研究内容。为此,详细介绍了改进粒子群神经网络混合算法(PSO-BP算法)的基本原理和流程,运用连续显式函数验证了该算法... 在我国特高压(ultra-high voltage,UHV)油气套管样机的试制过程中,套管尾部电场分布和均压球结构的优化是一项重要的研究内容。为此,详细介绍了改进粒子群神经网络混合算法(PSO-BP算法)的基本原理和流程,运用连续显式函数验证了该算法的寻优能力和准确度;并运用该算法对套管尾部均压球结构进行了优化。研究表明:PSO-BP算法能较准确地搜寻到显式函数的极值点,具有较强的挑出局部最优解的能力;需用套管3维全模型才能较准确地计算得出套管尾部的电场分布;PSO-BP算法能有效搜寻到均压球结构参数的最佳配置;优化后均压球表面的最大电场强度较优化前降低了约64.9%,且PSO-BP算法较传统PSO算法可节省约75.2%的计算时间。该研究结果已成功运用于特高压油气套管样机的试制并完成了全部型式试验。 展开更多
关键词 特高压(UHV) 油气套管 均压球 改进粒子神经网络混合(PSO-BP)算法 有限元法(FEM) 结构优化
在线阅读 下载PDF
基于改进混合粒子群算法和匹配理论的无人机电力巡检卸载策略 被引量:3
5
作者 黄冬梅 徐琦 +1 位作者 孙锦中 胡安铎 《计算机应用研究》 CSCD 北大核心 2023年第7期2111-2116,共6页
无人机搭载深度神经网络进行自主电力巡检时由于受到设备本身计算能力、电池容量、深度神经网络计算负载的限制,无法独立处理巡检任务中产生的海量图像数据。为解决该问题,提出了一种基于改进混合粒子群算法和匹配理论的无人机电力巡检... 无人机搭载深度神经网络进行自主电力巡检时由于受到设备本身计算能力、电池容量、深度神经网络计算负载的限制,无法独立处理巡检任务中产生的海量图像数据。为解决该问题,提出了一种基于改进混合粒子群算法和匹配理论的无人机电力巡检卸载策略,该策略将系统成本最小化问题分解为深度神经网络计算任务协同分割和边缘服务器选择两个子问题。针对协同分割子问题,基于深度神经网络计算任务的执行流程提出了一种错时传输方法,通过改进混合粒子群算法求解多无人机任务协同分割层。针对边缘服务器选择子问题,定义无人机与边缘服务器各自偏好函数,根据偏好函数通过匹配理论建立两者间的稳定匹配,得到边缘服务器选择策略。仿真结果表明,与其他卸载策略相比,所提策略能有效降低无人机能耗和计算任务处理时延,促进边缘服务器负载均衡。 展开更多
关键词 改进混合粒子算法 匹配理论 无人机巡检 边缘服务器
在线阅读 下载PDF
一种基于运动方向变异的混合粒子群算法研究
6
作者 陈明杰 郭少锋 张旻 《山东科技大学学报(自然科学版)》 CAS 2013年第6期84-88,共5页
针对粒子群算法搜索精度不高、易早熟收敛、搜索后期多样性下降快等问题,提出一种基于运动方向变异的混合改进粒子群算法。该算法通过改变部分粒子的运动方向增加种群多样性,扩大粒子的搜索范围;利用非线性减小惯性权重的方法增加搜索... 针对粒子群算法搜索精度不高、易早熟收敛、搜索后期多样性下降快等问题,提出一种基于运动方向变异的混合改进粒子群算法。该算法通过改变部分粒子的运动方向增加种群多样性,扩大粒子的搜索范围;利用非线性减小惯性权重的方法增加搜索后期的精度;用线性地增大和减小两个学习因子来平衡搜索的范围和精度,使得在搜索前期能够迅速定位到全局最优点附近,在搜索后期能够收敛到全局最优点。将该方法应用于函数优化中,仿真结果表明,该算法能够使粒子均匀分布在最优值空间范围内,调整和平衡粒子的全局搜索和局部精细搜索能力,同时能延缓粒子多样性的下降速度,使粒子能够跳出局部最优值。 展开更多
关键词 运动方向变异 混合改进粒子群 惯性权值 收敛性
在线阅读 下载PDF
融合EMD与GAIPSO-LSTM算法的锂离子电池RUL预测方法研究
7
作者 张俊贤 周英超 +3 位作者 李波 薛博峰 蒙心蕊 陈培震 《重庆理工大学学报(自然科学)》 北大核心 2025年第6期28-36,共9页
为提高锂离子电池RUL预测精度,提出一种将经验模态分解(EMD)、遗传算法混合改进粒子群优化算法(GAIPSO)以及长短期记忆(LSTM)神经网络结合的锂离子电池RUL预测模型。通过EMD对数据进行分解,结合Logistic混沌映射、自适应惯性权重、改进... 为提高锂离子电池RUL预测精度,提出一种将经验模态分解(EMD)、遗传算法混合改进粒子群优化算法(GAIPSO)以及长短期记忆(LSTM)神经网络结合的锂离子电池RUL预测模型。通过EMD对数据进行分解,结合Logistic混沌映射、自适应惯性权重、改进的速度更新公式,以及遗传算法中的选择、交叉和高斯变异操作,优化粒子群算法,利用改进后的GAIPSO算法对LSTM模型的参数进行优化,使用EMD-GAIPSO-LSTM预测模型对电池寿命进行预测,通过NASA发布的数据集进行模型预测精度验证。结果表明:该模型预测结果的平均绝对误差(mean absolute error,MAE)、均方根差(root mean square error,RMSE)分别在0.01204与0.01372以内,R^(2)在0.9791以上。相比于SSA-LSTM和PSO-LSTM模型,预测精度提高4.7%和2.5%,证明该模型对锂离子电池RUL预测准确性较高。 展开更多
关键词 锂离子电池 剩余使用寿命 EMD分解 遗传算法混合改进粒子群算法 长短期记忆神经网络
在线阅读 下载PDF
基于改进DPSO非退出故障下多无人机任务规划 被引量:2
8
作者 邵士凯 李厚振 赵渊洁 《科学技术与工程》 北大核心 2023年第32期14030-14040,共11页
针对非退出故障下多无人机(unmanned aerial vehicle,UAV)协同任务规划问题,提出了一种基于混合策略改进的离散粒子群算法(mixed strategy improved discrete particle swarm optimization,MSDPSO)。该方法首先采用Sobol序列进行种群初... 针对非退出故障下多无人机(unmanned aerial vehicle,UAV)协同任务规划问题,提出了一种基于混合策略改进的离散粒子群算法(mixed strategy improved discrete particle swarm optimization,MSDPSO)。该方法首先采用Sobol序列进行种群初始化,提高解空间的覆盖率;然后,提出非线性时变策略,加快算法的收敛速度;并引入柯西算子,增强离散粒子群算法的搜索空间;同时,还提出自适应交叉学习策略,丰富种群多样性,进而提升算法的全局寻优能力。综合改进的离散粒子群算法不仅加快了收敛速度,并且解的最优性也得到了提高。此外,运用三次样条插值算法进行无人机航迹规划,最后,将改进算法在三维空间中进行无人机故障前后的对比仿真实验,结果表明:所设计的算法具有显著的寻优有效性,为部分无人机发生轻微故障后,多机协同执行任务规划的问题提供了理论依据。 展开更多
关键词 多机协同 混合策略改进的离散粒子算法(MSDPSO) Sobol序列初始化 自适应交叉学习策略 三次样条插值算法
在线阅读 下载PDF
物联网边缘计算卸载和资源分配关联算法 被引量:6
9
作者 卫金菊 郭荣佐 《计算机工程与设计》 北大核心 2022年第8期2174-2180,共7页
针对物联网边缘计算卸载与资源分配问题,提出改进混合离散二进制粒子群算法(improve-BPSO)。将卸载决策和资源分配的相关算法进行关联,建立以系统总成本为优化目标的函数模型;将离散二进制粒子群与模拟退火算法相结合,优化产生算子的方... 针对物联网边缘计算卸载与资源分配问题,提出改进混合离散二进制粒子群算法(improve-BPSO)。将卸载决策和资源分配的相关算法进行关联,建立以系统总成本为优化目标的函数模型;将离散二进制粒子群与模拟退火算法相结合,优化产生算子的方法,制定卸载决策及更新;在更新的卸载决策下,将原问题转化为计算资源分配问题,利用拉格朗日乘子法求最优解。通过仿真实验与参比算法对比,该算法在迭代次数、周期数等影响因素下的总成本最低,有效提升了物联网终端设备性能和服务质量。 展开更多
关键词 物联网 边缘计算 卸载决策 资源分配 改进混合离散二进制粒子算法
在线阅读 下载PDF
基于多中心共同配送的收益分配优化问题 被引量:9
10
作者 王勇 任音吉 许茂增 《计算机集成制造系统》 EI CSCD 北大核心 2017年第7期1571-1580,共10页
针对多中心共同配送优化研究在收益分配机制方面存在的不足,提出先进行多中心共同配送优化后再进行收益分配优化的思想。以多中心共同配送网络构建的总成本最小化为目标函数,建立了基于配送中心到配送单元的配送成本和配送中心间运输成... 针对多中心共同配送优化研究在收益分配机制方面存在的不足,提出先进行多中心共同配送优化后再进行收益分配优化的思想。以多中心共同配送网络构建的总成本最小化为目标函数,建立了基于配送中心到配送单元的配送成本和配送中心间运输成本的数学规划模型,并提出一种改进的遗传—粒子群优化混合算法求解模型;应用最小最大费用收益分配模型求解多中心共同配送优化成本的收益分配方案,并综合不同合作博弈论收益分配模型进行比较分析;提出应用合作联盟稳定性模型探讨不同收益分配方案的优劣;应用严格单调路径方法分析联盟成员的优化合作序列。通过实例对所提方法的合理性进行了验证,结果表明,该方法应用在多中心共同配送收益分配优化中能提高合作联盟的稳定性,也适用于基于多中心合作联盟稳定性的物流配送网络优化。 展开更多
关键词 数学规划模型 改进遗传-粒子优化混合算法 合作博弈论 联盟稳定性 严格单调路径
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部