期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于机器学习的页岩气产能非确定性预测方法研究 被引量:22
1
作者 马文礼 李治平 +2 位作者 孙玉平 张静平 邓思哲 《特种油气藏》 CAS CSCD 北大核心 2019年第2期101-105,共5页
针对页岩气确定性产能预测方法误差较大的问题,综合最大信息系数相关性分析方法、混合支持向量机技术及"蒙特卡洛-马尔科夫链"模拟,提出一种基于机器学习的页岩气产能非确定性预测方法。运用该方法,可根据已投产页岩气井的地... 针对页岩气确定性产能预测方法误差较大的问题,综合最大信息系数相关性分析方法、混合支持向量机技术及"蒙特卡洛-马尔科夫链"模拟,提出一种基于机器学习的页岩气产能非确定性预测方法。运用该方法,可根据已投产页岩气井的地质及工程数据,对拟钻页岩气井未来的产能进行非确定性预测。24口页岩气井算例分析结果表明:利用该方法进行产能非确定性预测的准确率为70. 8%,且预测结果为"大概率事件"的井占54. 2%,说明该方法有较高的预测精度且预测结果满足概率统计规律。研究成果对国内外页岩气开发方案的优化有重要意义。 展开更多
关键词 产能预测 非确定性 页岩气 混合支持向量机 蒙特卡洛-马尔科夫链 器学习
在线阅读 下载PDF
基于二阶数据分解算法和蝗虫优化混合核LSSVM的太阳辐照度预测模型研究 被引量:3
2
作者 吴小涛 袁晓辉 +3 位作者 袁艳斌 易凡茹 朱婧巍 吴育联 《可再生能源》 CAS CSCD 北大核心 2021年第7期899-907,共9页
针对太阳辐照度时间序列的非线性特点,文章设计了一种新的基于二阶数据分解算法和蝗虫优化混合核LSSVM的太阳辐照度预测模型,并对该模型进行了验证。首先,利用集合经验模态分解(EEMD)算法对原始太阳辐照度时间序列进行分解,得到若干个... 针对太阳辐照度时间序列的非线性特点,文章设计了一种新的基于二阶数据分解算法和蝗虫优化混合核LSSVM的太阳辐照度预测模型,并对该模型进行了验证。首先,利用集合经验模态分解(EEMD)算法对原始太阳辐照度时间序列进行分解,得到若干个频率不同的分量;然后,利用变分模态分解(VMD)算法进一步分解频率最高的分量,得到K个相对稳定的分量,其中,K由各分量与利用VMD算法分解得到的残差的相关系数确定;接着,建立基于高斯核和多项式核的混合核最小二乘支持向量机(LSSVM)预测模型,对所有分量进行预测,并利用蝗虫优化算法优化混合核函数的参数;最后,将所有分量的预测结果相加得到原始太阳辐照度时间序列的预测结果。模拟结果表明,与BP神经网络模型、ARIMA模型、LSSVM模型和基于EEMD,LSSVM的预测模型相比,基于二阶数据分解算法和蝗虫优化混合核LSSVM的太阳辐照度预测模型的预测精度更高,能有效反映太阳辐照度的变化规律。 展开更多
关键词 集合经验模态分解算法 变分模态分解算法 混合核最小二乘支持向量 蝗虫优化算法
在线阅读 下载PDF
基于混合PLS-SVM方法的双酚A软测量建模 被引量:4
3
作者 郭景华 杨慧中 《江南大学学报(自然科学版)》 CAS 2009年第2期127-130,共4页
在对复杂生产过程的软测量建模中,为了有效地处理其生产过程的非线性、多输入和数据相关性等复杂特性,提高模型的推广能力和精度,提出了一种兼备偏最小二乘和支持向量机优点的混合偏最小二乘-支持向量机方法。在对双酚A结晶塔工艺分析... 在对复杂生产过程的软测量建模中,为了有效地处理其生产过程的非线性、多输入和数据相关性等复杂特性,提高模型的推广能力和精度,提出了一种兼备偏最小二乘和支持向量机优点的混合偏最小二乘-支持向量机方法。在对双酚A结晶塔工艺分析的基础上,将该方法应用于双酚A结晶塔软测量建模。应用结果表明,该方法在模型精度、推广能力等方面都明显优于一些传统软测量建模方法。 展开更多
关键词 支持向量 偏最小二乘 软测量 双酚A 混合偏最小二乘-支持向量
在线阅读 下载PDF
基于WLA优化混合核LSSVM的网络入侵检测模型 被引量:3
4
作者 张茹 赵利辉 董和磊 《中北大学学报(自然科学版)》 CAS 2023年第3期229-237,共9页
针对网络数据维度高、分布差异较大等引起的网络入侵检测时间开销大,精度低、泛化性差的问题,提出混合入侵检测模型(Hybrid intrusion detection model,简称HIDM)。首先通过对比检测效果选择互信息理论作为HIDM模型的特征选择模块,用来... 针对网络数据维度高、分布差异较大等引起的网络入侵检测时间开销大,精度低、泛化性差的问题,提出混合入侵检测模型(Hybrid intrusion detection model,简称HIDM)。首先通过对比检测效果选择互信息理论作为HIDM模型的特征选择模块,用来实现特征降维和节省开销;接着利用非线性递减因子、自适应权值策略结合鲸鱼优化算法提出鲸鱼提升算法(Whale Lifting Algorithm,简称WLA),最后利用WLA优化混合核最小二乘支持向量机的参数构建了HIDM模型,有效检测网络入侵。基于NSL-KDD数据集的仿真结果表明HIDM模型针对网络攻击的检测率、准确率和误报率分别达到了99.63%,99.4%和0.86%;同部分已有研究相比检测率有所提升;同时利用CICIDS2018数据集验证了HIDM模型的泛化性。 展开更多
关键词 入侵检测 互信息理论 混合核最小二乘支持向量 鲸鱼提升算法
在线阅读 下载PDF
基于MK-SVM和时序特征分析的月径流预报模型
5
作者 雷庆文 闫磊 +2 位作者 巫晨煜 罗云 谢笑添 《水资源保护》 EI CAS CSCD 北大核心 2024年第6期148-154,共7页
针对传统径流预报方法预报因子不确定性和预报模型复杂性问题,基于月径流时序特征重要性分析选择预报因子,采用混合核函数支持向量机(MK-SVM)模型捕捉径流时序间的非线性关系,提出动态透镜成像反向学习和Lévy飞行等多策略融合的改... 针对传统径流预报方法预报因子不确定性和预报模型复杂性问题,基于月径流时序特征重要性分析选择预报因子,采用混合核函数支持向量机(MK-SVM)模型捕捉径流时序间的非线性关系,提出动态透镜成像反向学习和Lévy飞行等多策略融合的改进灰狼优化算法(IGWO),并构建了径流预报的IGWO-MK-SVM模型。黑河流域莺落峡水文站月径流预报结果表明:IGWO-MK-SVM模型月径流预报结果的纳什效率系数、均方根误差、Kling-Gupta效率系数分别为0.8942、16.9099 m^(3)/s和0.8639;与传统SVM模型相比,IGWO-MK-SVM模型在径流预报中的自适应性有所提升,相较于长短期记忆网络模型和季节性差分自回归移动平均模型,IGWO-MK-SVM模型能更好地预报月径流的真实变化过程。 展开更多
关键词 径流预报 森林 径流预报因子 混合核函数支持向量 改进灰狼优化算法 黑河流域
在线阅读 下载PDF
基于GRA与SVM-mixed的货运量预测方法 被引量:22
6
作者 梁宁 耿立艳 +1 位作者 张占福 梁毅刚 《交通运输系统工程与信息》 EI CSCD 北大核心 2016年第6期94-99,共6页
铁路货运量与其影响因素之间关系复杂,单一核函数支持向量机(SVM)难以进行准确描述,而且各因素对铁路货运量的影响程度具有差异性,若忽略这种差异性,将难以获得理想的铁路货运量预测结果.为此,本文提出一种基于灰色关联分析(GRA)与混合... 铁路货运量与其影响因素之间关系复杂,单一核函数支持向量机(SVM)难以进行准确描述,而且各因素对铁路货运量的影响程度具有差异性,若忽略这种差异性,将难以获得理想的铁路货运量预测结果.为此,本文提出一种基于灰色关联分析(GRA)与混合核函数支持向量机(SVM-mixed)的铁路货运量预测方法.该方法采用灰色关联分析确定各影响因素的权重,再将赋予权重的影响因素作为输入变量,构建多项式核函数与径向基核函数线性组合的SVM-mixed预测模型.针对SVM-mixed参数难以确定问题,采用果蝇优化算法(FOA)选择SVM-mixed最优参数.基于中国铁路货运量的实例分析表明,该方法可有效提高铁路货运量的预测精度,为准确预测铁路货运量提供了一种新途径. 展开更多
关键词 铁路运输 货运量 预测 灰色关联分析 混合核函数支持向量
在线阅读 下载PDF
基于区分性Model Pushing的语种识别方法 被引量:3
7
作者 刘伟伟 吉立新 +1 位作者 李邵梅 徐文 《电子技术应用》 北大核心 2012年第4期113-116,共4页
提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加... 提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度。实验结果表明,区分性Model Pushing能有效地提高识别性能。 展开更多
关键词 语种识别 区分性Model PUSHING 高斯混合模型超矢量-支持向量 超平面法向量
在线阅读 下载PDF
Hybrid Support Vector Machines-Based Multi-fault Classification 被引量:11
8
作者 GAO Guo-hua ZHANG Yong-zhong +1 位作者 ZHU Yu DUAN Guang-huang 《Journal of China University of Mining and Technology》 EI 2007年第2期246-250,共5页
Support Vector Machines (SVM) is a new general machine-learning tool based on structural risk minimization principle. This characteristic is very signific ant for the fault diagnostics when the number of fault sampl... Support Vector Machines (SVM) is a new general machine-learning tool based on structural risk minimization principle. This characteristic is very signific ant for the fault diagnostics when the number of fault samples is limited. Considering that SVM theory is originally designed for a two-class classification, a hybrid SVM scheme is proposed for multi-fault classification of rotating machinery in our paper. Two SVM strategies, 1-v-1 (one versus one) and 1-v-r (one versus rest), are respectively adopted at different classification levels. At the parallel classification level, using l-v-1 strategy, the fault features extracted by various signal analysis methods are transferred into the multiple parallel SVM and the local classification results are obtained. At the serial classification level, these local results values are fused by one serial SVM based on 1-v-r strategy. The hybrid SVM scheme introduced in our paper not only generalizes the performance of signal binary SVMs but improves the precision and reliability of the fault classification results. The actually testing results show the availability suitability of this new method. 展开更多
关键词 Suooort Vector Machines multi-fault classification hybrid strategy wavelet analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部