期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于多数据融合和自适应加权混合损失函数约束的地震波初至智能拾取方法
1
作者 赵军才 马江涛 +3 位作者 刘洋 王宁 胡亚东 谭勇 《石油物探》 北大核心 2025年第4期691-700,共10页
初至拾取是地震数据处理的关键环节之一,其拾取精度直接影响速度模型的构建及静校正效果。常规基于卷积神经网络的初至拾取方法虽然效果显著,但在黄土塬等复杂地表地区,由于初至波能量弱、背景噪声强等因素影响,拾取效果往往不佳。为此... 初至拾取是地震数据处理的关键环节之一,其拾取精度直接影响速度模型的构建及静校正效果。常规基于卷积神经网络的初至拾取方法虽然效果显著,但在黄土塬等复杂地表地区,由于初至波能量弱、背景噪声强等因素影响,拾取效果往往不佳。为此,提出了一种基于多数据融合和自适应加权混合损失函数约束的深度学习初至拾取方法。首先,将地震记录、偏移距和高程信息进行融合,构建多数据融合模型,提升方法的鲁棒性;然后,通过自适应加权策略优化多个损失函数的组合,构建自适应加权混合损失函数来有效约束模型的训练过程,进而提升模型的初至拾取精度。实际地震数据测试结果表明,在复杂地质条件下的弱初至、强噪声情况下,所提出的初至拾取方法较常用的长/短时窗均值比方法和地震图像深度语义分割方法(简称分割方法)具有更好的拾取效果和更强的抗噪性能,测试结果验证了方法的有效性和鲁棒性。 展开更多
关键词 初至拾取 卷积神经网络 数据融合 自适应加权混合损失函数
在线阅读 下载PDF
基于密集特征推理及混合损失函数的修复算法 被引量:1
2
作者 李海燕 尹浩林 +1 位作者 李鹏 周丽萍 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第9期99-109,共11页
为有效解决现有算法修复大面积不规则缺失图像时存在特征利用率低、图像结构连贯性差的问题,提出基于密集特征推理(DFR)及混合损失函数的图像修复算法。修复网络由多个特征推理(FR)模块密集连接组成,首先将待修复图像输入第1个推理模块... 为有效解决现有算法修复大面积不规则缺失图像时存在特征利用率低、图像结构连贯性差的问题,提出基于密集特征推理(DFR)及混合损失函数的图像修复算法。修复网络由多个特征推理(FR)模块密集连接组成,首先将待修复图像输入第1个推理模块中进行特征推理,之后将输出特征图通道合并送入下一个推理模块,后续推理的每一个模块的输入都是来自前面所有推理模块的推理特征,如此循环,以充分利用每个推理模块捕获的特征信息;然后提出一个传播一致性注意力机制(PCA),提高修补区域与已知区域的整体一致性;最后,提出混合损失函数(ML)优化修复结果的结构连贯性。整个DFR网络使用组归一化(GN),小批量训练也可达到优异的修复效果。在国际公认的Paris StreetView巴黎街景数据集和CelebA人脸数据集上验证文中所提算法的性能,主客观的实验结果表明:所提算法能有效修复大面积不规则缺失图像,提升特征利用率与结构连贯性,其平均峰值信噪比(PSNR)、平均结构相似度(SSIM)、均方误差(MSE)、弗雷歇距离(FID)及学习感知图像块相似度(LPIPS)指标优于对比算法。 展开更多
关键词 图像修复 密集特征推理 注意力机制 混合损失函数 组归一化
在线阅读 下载PDF
混合损失函数支持向量回归机的性能研究 被引量:6
3
作者 李小光 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期210-214,共5页
目的研究混合损失函数的支持向量回归机。方法综合一次ε-不敏感损失函数和二次ε-不敏感损失函数的部分性质,得到一种混合损失函数。结果同一般的一次ε-不敏感损失函数支持向量回归机和二次ε-不敏感损失函数支持向量回归机相比较,对... 目的研究混合损失函数的支持向量回归机。方法综合一次ε-不敏感损失函数和二次ε-不敏感损失函数的部分性质,得到一种混合损失函数。结果同一般的一次ε-不敏感损失函数支持向量回归机和二次ε-不敏感损失函数支持向量回归机相比较,对数据的波动性不大,噪声不明显的数据,混合损失函数支持向量回归机的优势并不显著。结论该混合损失函数支持向量回归机对含有高斯强噪声和一些具有振幅较大的异常点所形成的数据具有较高的准确率。 展开更多
关键词 一次ε-不敏感损失函数 二次ε-不敏感损失函数 混合损失函数 支持向量回归机
在线阅读 下载PDF
基于混合损失U-Net的SAR图像渤海海冰检测研究 被引量:12
4
作者 徐欢 任沂斌 《海洋学报》 CAS CSCD 北大核心 2021年第6期157-170,共14页
渤海是我国重要的经济区,海冰灾害严重威胁着人类生产活动。合成孔径雷达具有全天候成像能力,研究渤海区域的SAR图像海冰检测具有重要意义。传统海冰检测方法受限于特征提取方法和建模方式,检测精度有待提升。深度学习具有极强的特征自... 渤海是我国重要的经济区,海冰灾害严重威胁着人类生产活动。合成孔径雷达具有全天候成像能力,研究渤海区域的SAR图像海冰检测具有重要意义。传统海冰检测方法受限于特征提取方法和建模方式,检测精度有待提升。深度学习具有极强的特征自学习能力,适用于图像检测问题。本文基于深度学习框架U-Net,以Sentinel-1双极化(VV和VH)合成孔径雷达图像为输入信息,设计混合损失函数优化传统U-Net模型,形成了基于混合损失U-Net的渤海海冰检测模型。将本文模型与传统海冰检测方法[脉冲耦合神经网络(PCNN)、马尔科夫随机场(MRF)和分水岭算法]和基于深度卷积神经网络(CNN)的深度学习方法进行了对比。实验结果表明:本文基于混合损失U-Net的海冰检测模型在重叠度、F1分数、精确度和召回率4项度量指标上分别达到了97.567%、98.769%、98.767%和98.771%,检测效果明显优于对比方法;双极化信息输入的检测结果比VV单极化输入的检测结果在F1分数、精确度、召回率和重叠度上分别提高了0.375%、0.111%、0.639%和0.740%;混合损失函数的检测结果比非混合损失函数的检测结果在F1分数、精确度、召回率和重叠度上分别提高了1.129%、0.947%、1.794%和2.231%;模型能对冰水沿线、冰间水道、冰间隙等细节进行有效检测;可应用于渤海区域整幅SAR图像的海冰检测,为海冰监测、海冰变化分析、海冰预报提供技术支撑。 展开更多
关键词 合成孔径雷达图像 海冰检测 深度学习 U-Net 混合损失函数
在线阅读 下载PDF
基于卷积神经网络的轻量高效图像隐写 被引量:1
5
作者 段新涛 白鹿伟 +4 位作者 徐凯欧 张萌 保梦茹 武银行 秦川 《应用科学学报》 北大核心 2025年第1期80-93,共14页
基于深度学习的图像隐写方法,因存在模型参数量和计算量大等问题,而面临高参数和计算负载的挑战,为此提出了一种轻量高效的图像隐写方法。首先在编码器和解码器中引入Ghost模块,降低了编码器和解码器的参数量和计算量。其次提出了一个... 基于深度学习的图像隐写方法,因存在模型参数量和计算量大等问题,而面临高参数和计算负载的挑战,为此提出了一种轻量高效的图像隐写方法。首先在编码器和解码器中引入Ghost模块,降低了编码器和解码器的参数量和计算量。其次提出了一个多尺度特征融合模块,用以捕捉多维数据中的复杂关系。最后提出了一个新颖的混合损失函数,可在保持模型不变的情况下提升图像隐写质量。实验结果表明,所提方法在256×256像素的图像上峰值信噪比达到47.59 dB。与目前最优的图像隐写方法相比,所提方法的隐写质量提升1.7 dB,参数量减少77%,计算量减少91%,在隐写质量上有较优的表现,同时模型的参数量和计算量大大降低,实现了模型的轻量高效化。 展开更多
关键词 图像隐写 深度学习 多尺度特征融合 混合损失函数
在线阅读 下载PDF
融合边缘信息的三维脑肿瘤图像分割算法 被引量:1
6
作者 田恒屹 王瑜 +1 位作者 马慧鋆 郭朝晖 《传感器与微系统》 北大核心 2025年第5期120-123,128,共5页
脑肿瘤图像分割是临床诊断的关键步骤,针对磁共振成像(MRI)影像中脑肿瘤病灶区域与正常脑组织之间边界模糊的问题,提出一种融合边缘特征的图像分割方法,利用边缘注意模块,有针对性地引导模型关注肿瘤边界区域。同时,设计一种自适应加权... 脑肿瘤图像分割是临床诊断的关键步骤,针对磁共振成像(MRI)影像中脑肿瘤病灶区域与正常脑组织之间边界模糊的问题,提出一种融合边缘特征的图像分割方法,利用边缘注意模块,有针对性地引导模型关注肿瘤边界区域。同时,设计一种自适应加权混合损失函数,在训练过程中自适应调整边缘与肿瘤整体损失部分的权重。利用公开的脑肿瘤数据集进行实验,提出的分割模型对完整肿瘤分割结果的Dice值达到了91.10%。实验结果表明,提出的方法可以显著提升分割精度,特别是边缘部分的分割效果。 展开更多
关键词 深度学习 脑肿瘤分割 边缘注意 混合损失函数
在线阅读 下载PDF
用于脑肿瘤分割的N形神经网络
7
作者 迟孟贤 安虹 +2 位作者 金旭 许延杰 聂振国 《小型微型计算机系统》 北大核心 2025年第2期365-372,共8页
传统的U型神经网络网络在脑肿瘤分割任务中存在高层信息表征能力不足和分割标签不平衡等问题.本文提出了一种新型脑肿瘤分割模型N-Net,能够有效融合多尺度信息,综合考虑全局语义与局部细节,提高了对不同大小肿瘤的分割性能.模型引入特... 传统的U型神经网络网络在脑肿瘤分割任务中存在高层信息表征能力不足和分割标签不平衡等问题.本文提出了一种新型脑肿瘤分割模型N-Net,能够有效融合多尺度信息,综合考虑全局语义与局部细节,提高了对不同大小肿瘤的分割性能.模型引入特征金字塔进行多尺度语义特征的传递,并且采用通道空间融合注意力机制自适应地关注与肿瘤相关区域,此外,本文增加了模型层级并利用残差卷积模块解决梯度消失问题.最后,本文采用改进的混合损失函数应对标签不平衡问题,提高了分割结果的准确性和鲁棒性.在MSD数据集上的实验结果表明,本文提出的方法在多个评估指标上显著优于其他先进模型,展示了其在脑肿瘤分割任务上的有效性. 展开更多
关键词 脑肿瘤分割 特征金字塔 注意力机制 混合损失函数 N形神经网络
在线阅读 下载PDF
应用RAtte-UNet的三维断层识别方法
8
作者 高新成 梁云虎 +1 位作者 王莉利 吴吉忠 《石油地球物理勘探》 北大核心 2025年第1期12-20,共9页
地震数据中的断层结构可以揭示地下构造和岩层变化,为资源勘探和地质灾害防治提供重要依据。然而实际采集的三维地震数据中包含大量噪声且断层体所占比例极小,利用蚂蚁体识别方法得到的结果误差较大,连续性和准确性不够。为此,提出一种... 地震数据中的断层结构可以揭示地下构造和岩层变化,为资源勘探和地质灾害防治提供重要依据。然而实际采集的三维地震数据中包含大量噪声且断层体所占比例极小,利用蚂蚁体识别方法得到的结果误差较大,连续性和准确性不够。为此,提出一种基于深度学习的三维残差注意力RAtte‑UNet断层识别方法,即融合残差跳跃连接与注意力机制并进行模型训练,采用混合损失函数减少断层与非断层的极度不平衡对网络训练的影响,使网络对于小断层具有更好的识别能力。通过对模拟数据和真实数据进行断层识别,准确率、召回率和精确率等评价指标均有所提升。相比于蚂蚁体等断层识别方法,该方法的识别结果中断层连续性更好,并能识别小断层,模型泛化能力更强。该方法可推广应用到实际地震勘探中。 展开更多
关键词 断层识别 残差跳跃连接 注意力机制 混合损失函数 RAtte‑UNet
在线阅读 下载PDF
基于双向交叉注意力的多尺度特征融合情感分类
9
作者 梁一鸣 范菁 柴汶泽 《计算机应用》 北大核心 2025年第9期2773-2782,共10页
针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机... 针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机制的情感分类模型M-BCA(Multi-scale BERT features with Bidirectional Cross Attention)。首先,从BERT的低层、中层和高层分别提取多尺度特征,以捕捉句子文本的表面信息、语法信息和深层语义信息;其次,利用三通道门控循环单元(GRU)进一步提取深层语义特征,从而增强模型对文本的理解能力;最后,为促进不同尺度特征之间的交互与学习,引入双向交叉注意力机制,从而增强多尺度特征之间的相互作用。此外,针对不平衡数据问题,设计数据增强策略,并采用混合损失函数优化模型对少数类别样本的学习。实验结果表明,在细粒度情感分类任务中,M-BCA表现优异。M-BCA在处理分布不平衡的多分类情感数据集时,它的性能显著优于大多数基线模型。此外,M-BCA在少数类别样本的分类任务中表现突出,尤其是在NLPCC 2014与Online_Shopping_10_Cats数据集上,MBCA的少数类别的Macro-Recall领先其他所有对比模型。可见,该模型在细粒度情感分类任务中取得了显著的性能提升,并适用于处理不平衡数据集。 展开更多
关键词 BERT 细粒度情感分类 多尺度特征融合 数据增强 混合损失函数 双向交叉注意力
在线阅读 下载PDF
基于多尺度注意力和空间通道重构卷积的冲击回波频谱图像分类
10
作者 崔博 武冰冰 +3 位作者 陈伟 孟庆洪 王晓 黄祺祥 《南京信息工程大学学报》 北大核心 2025年第5期659-669,共11页
针对传统卷积神经网络对冲击回波信号频谱图像进行分类时,面临卷积神经网络特征提取能力不足和数据集类别不平衡的问题,提出一种基于多尺度注意力和空间通道重构卷积的神经网络模型(Multi-scale Hybrid Attention and Spatial Channel R... 针对传统卷积神经网络对冲击回波信号频谱图像进行分类时,面临卷积神经网络特征提取能力不足和数据集类别不平衡的问题,提出一种基于多尺度注意力和空间通道重构卷积的神经网络模型(Multi-scale Hybrid Attention and Spatial Channel Reconstruction Convolutional Neural Network,MHA-SCConvNet).首先设计了多尺度混合注意力(Multi-scale Hybrid Attention,MHA)模块,用于提取不同尺度的频谱图像特征并增强模型对频谱波形关键信息的关注力度.其次,引入空间通道重构卷积(Spatial and Channel Reconstruction Convolution,SCConv)模块,通过优化图像特征的表示来降低特征冗余.最后,提出了新的混合损失函数GDHM Loss(Gradient and Distribution Harmonized Margin Loss,梯度与分布协调边距损失),该损失函数在动态情况下同时考虑难分类样本和少数类样本.在自建的数据集上进行了训练与测试,并与AlexNet、VGGNet、GoogLeNet等分类模型对比,MHA-SCConvNet准确率达到94.58%.实验结果表明,MHA-SCConvNet模型能够有效提高冲击回波信号频谱图像分类的准确率和效率. 展开更多
关键词 频谱图像分类 多尺度注意力模块 卷积神经网络 混合损失函数 空间通道重构卷积
在线阅读 下载PDF
样本不平衡下基于图卷积网络的化工过程故障诊断
11
作者 钱强 马萍 +3 位作者 王妮妮 张宏立 王聪 李新凯 《哈尔滨工业大学学报》 北大核心 2025年第9期76-86,共11页
为解决实际化工过程故障样本匮乏,现有故障诊断模型在数据分布不平衡下故障诊断准确率低的问题,提出一种基于代价敏感多感受野时空图注意力网络(cost sensitive multireceptive fields spatio-temporal graph attention network,CSMRFST... 为解决实际化工过程故障样本匮乏,现有故障诊断模型在数据分布不平衡下故障诊断准确率低的问题,提出一种基于代价敏感多感受野时空图注意力网络(cost sensitive multireceptive fields spatio-temporal graph attention network,CSMRFSTGAT)故障诊断模型。该模型通过最大信息系数(maximal information coefficient,C_(MI))加权计算,将化工过程采集的相关变量数据转换为拓扑图数据,利用图卷积网络(graph convolution network,GCN)的故障诊断模型设计出了多感受野图卷积模块(multireceptive fields graph convolutional module,MRFGCM)和时空图注意力模块(space-time graph attention module,STGAM),然后提出了混合边缘感知焦点损失函数(hybrid margin-aware focus loss,L_(HMF)),用于对较难识别样本施加更多的惩罚。将所提模型应用于田纳西伊斯曼过程(Tennessee Eastman process,TEP)和三相流(three-phase flow,TPF)数据集中多个不平衡场景下评估其诊断性能。结果表明:所提模型在TPF数据集中的分类精确率和F1分数分别达到了91%和92%以上,同时在TEP数据集中的分类召回率和F1分数均突破了99%;相较于机器学习模型、深度学习模型以及图深度学习模型,所提模型能更加有效地识别故障。所提模型在处理数据不平衡问题上具有优异的泛化性能,能有效实现样本不平衡下化工过程故障诊断。 展开更多
关键词 化工过程 故障诊断 样本不平衡 图深度学习 混合边缘感知焦点损失函数
在线阅读 下载PDF
多尺度和卷积注意力相结合的红外与可见光图像融合 被引量:2
12
作者 祁艳杰 侯钦河 《红外技术》 CSCD 北大核心 2024年第9期1060-1069,共10页
针对红外与可见光图像融合时,单一尺度特征提取不足、红外目标与可见光纹理细节丢失等问题,提出一种多尺度和卷积注意力相结合的红外与可见光图像融合算法。首先,设计多尺度特征提取模块和可变形卷积注意力模块相结合的编码器网络,多感... 针对红外与可见光图像融合时,单一尺度特征提取不足、红外目标与可见光纹理细节丢失等问题,提出一种多尺度和卷积注意力相结合的红外与可见光图像融合算法。首先,设计多尺度特征提取模块和可变形卷积注意力模块相结合的编码器网络,多感受野提取红外与可见光图像的重要特征信息。然后,采用基于空间和通道双注意力机制的融合策略,进一步融合红外和可见光图像的典型特征。最后,由3层卷积层构成解码器网络,用于重构融合图像。此外,设计基于均方误差、多尺度结构相似度和色彩的混合损失函数约束网络训练,进一步提高融合图像与源图像的相似性。本算法在公开数据集上与7种图像融合算法进行比较,在主观评价和客观评价方面,所提算法相较其它对比算法具有较好的边缘保持性、源图像信息保留度,较高的融合图像质量。 展开更多
关键词 红外与可见光图像 混合损失函数 多尺度特征提取 注意力机制 图像融合
在线阅读 下载PDF
融合CNN和ViT的乳腺超声图像肿瘤分割方法 被引量:2
13
作者 彭雨彤 梁凤梅 《智能系统学报》 CSCD 北大核心 2024年第3期556-564,共9页
针对乳腺超声图像肿瘤区域形状大小差异大导致分割困难,卷积神经网络(convolutional neural networks,CNN)建模长距离依赖性和空间相关性方面存在局限性,视觉Transformer(vision Transformer,ViT)要求数据量巨大等问题,提出一种融合CNN... 针对乳腺超声图像肿瘤区域形状大小差异大导致分割困难,卷积神经网络(convolutional neural networks,CNN)建模长距离依赖性和空间相关性方面存在局限性,视觉Transformer(vision Transformer,ViT)要求数据量巨大等问题,提出一种融合CNN和ViT的分割方法。使用改进的Swin Transformer模块和基于可形变卷积的CNN编码器模块分别提取全局特征和局部细节特征,设计使用交叉注意力机制融合这两种尺度的特征表示,训练过程采取二元交叉熵损失混合边界损失函数,有效提高分割精度。在两个公共数据集上的实验结果表明,与现有经典算法相比所提方法的分割结果有显著提升,dice系数提升3.8412%,验证所提方法的有效性和可行性。 展开更多
关键词 卷积神经网络 乳腺超声图像分割 Swin Transformer 交叉注意力机制 混合损失函数 可形变卷积 多头跳跃注意力 深度学习
在线阅读 下载PDF
结合空洞卷积与注意力机制的道路提取方法 被引量:1
14
作者 余果 李大成 杨毅 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第5期175-185,共11页
针对高分辨率影像中道路情况复杂,存在细小道路和被建筑、阴影等隔断道路,导致道路提取精度不高的问题,提出一种结合空洞卷积单元和并行注意力机制模块的改进模型AP-LinkNet。该模型是通过在下采样编码过程中扩大感受野和深层次关注道... 针对高分辨率影像中道路情况复杂,存在细小道路和被建筑、阴影等隔断道路,导致道路提取精度不高的问题,提出一种结合空洞卷积单元和并行注意力机制模块的改进模型AP-LinkNet。该模型是通过在下采样编码过程中扩大感受野和深层次关注道路特征以达到更高的细节道路提取精度。其中空洞卷积模块在扩大感受野的同时不改变空间上像素之间的关系,并行注意力机制提高输入影像采样过程中对通道和空间信息的关注度,并加权赋值给解码步骤的反卷积特征。结合两种机制的特点,减少复杂道路背景的噪声扰乱性以及提高道路提取模型的整体精度。与DeepLabV3+、U-Net、LinkNet和D-LinkNet模型做对比分析,AP-LinkNet模型在DeepGlobe数据集上道路提取的F_(1)分数和IOU评价指标为80.69%和78.65%,其中F_(1)分数分别高出对比模型11.71%、5.24%、3.97%和3.58%。结果表明模型精确度和鲁棒性更高,对于高分影像狭窄、被遮挡等复杂道路细节提取效果好。 展开更多
关键词 深度学习 空洞卷积 并行注意力机制 混合损失函数 卷积神经网络
在线阅读 下载PDF
一种结合注意力残差的肝脏及肝肿瘤分割算法 被引量:1
15
作者 王峰 邹俊忠 《计算机应用与软件》 北大核心 2024年第1期183-189,197,共8页
长时间的肝脏医学图像人工诊断容易使医生产生疲劳,导致误诊和漏诊情况发生。针对以上现象提出一种改进的Unet网络用于肝脏和肝肿瘤自动分割。改进Unet模型,引入注意力残差结构和特征复用结构,提高输入图像中特征信息的利用效率;对损失... 长时间的肝脏医学图像人工诊断容易使医生产生疲劳,导致误诊和漏诊情况发生。针对以上现象提出一种改进的Unet网络用于肝脏和肝肿瘤自动分割。改进Unet模型,引入注意力残差结构和特征复用结构,提高输入图像中特征信息的利用效率;对损失函数进行改进,在Dice系数中加入欠分割和过分割惩罚因子,提高模型的预测能力。在公开数据集上的实验结果表明:该算法对肝脏和肝肿瘤的分割相似系数分别达到了0.962和0.713,优于现有的分割模型且具有较强的鲁棒性。 展开更多
关键词 Unet 肝肿瘤分割 预处理 混合损失函数 注意力机制 残差连接
在线阅读 下载PDF
改进多阶段渐进式的受电弓碳滑板图像去模糊
16
作者 刘伟民 张梦准 +2 位作者 郑爱云 刘晋 郑直 《电子测量技术》 北大核心 2024年第5期85-93,共9页
针对高铁运行速度过快,容易导致受电弓碳滑板的监测图像出现运动模糊问题,提出了一种改进多阶段渐进式网络的图像去模糊方法。首先,引入混合膨胀卷积作为特征提取网络,在不改变计算量和特征图分辨率前提下,可以增大局部感受野,进而可获... 针对高铁运行速度过快,容易导致受电弓碳滑板的监测图像出现运动模糊问题,提出了一种改进多阶段渐进式网络的图像去模糊方法。首先,引入混合膨胀卷积作为特征提取网络,在不改变计算量和特征图分辨率前提下,可以增大局部感受野,进而可获取高质量的图像纹理和细节信息;其次,引入像素点注意力机制,自适应地选择每个像素点的权重值,增强模型去模糊质量;再次,引入混合损失函数,提高模型对不同类型模糊的鲁棒性;最后,制作1600对受电弓碳滑板监测图像合成数据集以供模型进行训练和测试。为了评估所提网络的去模糊效果,将训练所得模型在上述数据集上进行了测试,实验结果表明峰值信噪比达到了38.82 dB、结构相似性达到了0.9723,在视觉上较另外7种经典方法能更好地复原图像的边缘轮廓和纹理细节信息。有效地提升了模型的鲁棒性。 展开更多
关键词 图像去模糊 卷积神经网络 混合膨胀卷积 像素点注意力 混合损失函数
在线阅读 下载PDF
基于双注意力机制信息蒸馏网络的图像超分辨率复原算法 被引量:4
17
作者 王素玉 杨静 李越 《计算机应用》 CSCD 北大核心 2022年第1期239-244,共6页
针对超分辨率复原技术中网络层数不断加深导致的网络训练困难、特征信息利用率低等问题,设计并实现了一种基于双注意力的信息蒸馏网络(IDN)的图像超分辨率复原算法。首先,利用IDN较低的计算复杂度及信息蒸馏模块提取更多特征的优势,通... 针对超分辨率复原技术中网络层数不断加深导致的网络训练困难、特征信息利用率低等问题,设计并实现了一种基于双注意力的信息蒸馏网络(IDN)的图像超分辨率复原算法。首先,利用IDN较低的计算复杂度及信息蒸馏模块提取更多特征的优势,通过引入残差注意力模块(RAM)并考虑图像通道之间的相互依赖性来自适应地重新调整特征权重,从而进一步提升图像高分辨率细节的重建能力;然后,设计了对于边缘信息敏感的新型混合损失函数对图像进行细化处理,以加速网络收敛。在Set5、Set14、BSD100和Urban100公共数据集上的测试结果表明,该方法的视觉效果和峰值信噪比(PSNR)均优于当前主流算法。 展开更多
关键词 信息蒸馏网络 图像超分辨率复原 空间注意力 通道注意力 混合损失函数
在线阅读 下载PDF
引入门控轴向自注意力的多通道病理图像分割
18
作者 陈志 李歆 +2 位作者 林丽燕 钟婧 时鹏 《计算机应用》 CSCD 北大核心 2023年第4期1269-1277,共9页
在苏木精-伊红(HE)染色病理图像中,细胞染色分布的不均匀和各类组织形态的多样性给自动化分割带来了极大挑战。针对传统卷积无法捕获大邻域范围内像素间的关联特征,导致分割效果难以进一步提升的问题,提出引入门控轴向自注意力的多通道... 在苏木精-伊红(HE)染色病理图像中,细胞染色分布的不均匀和各类组织形态的多样性给自动化分割带来了极大挑战。针对传统卷积无法捕获大邻域范围内像素间的关联特征,导致分割效果难以进一步提升的问题,提出引入门控轴向自注意力的多通道分割网络(MCSegNet)模型,以实现病理图像细胞核的精准分割。所提模型采用双编码器和解码器结构,在其中使用轴向自注意力编码通道捕获全局特征,并使用基于残差结构的卷积编码通道获取局部精细特征;在编码通道末端,通过特征融合增强特征表示,从而为解码器提供良好的信息基础;而解码器通过级联多个上采样模块逐步生成分割结果。此外,使用改进的混合损失函数有效解决了病理图像中普遍存在的样本不均衡问题。在MoNuSeg2020公开数据集上的实验结果表明,改进的分割方法比U-Net在F1、交并比(IoU)指标上分别提升了2.66个百分点、2.77个百分点,有效改善了病理图像的分割效果,提高了临床诊断的可靠性。 展开更多
关键词 病理图像 细胞核分割 轴向自注意力 残差结构 混合损失函数
在线阅读 下载PDF
基于改进区域卷积神经网络的田间玉米叶部病害识别 被引量:18
19
作者 樊湘鹏 周建平 许燕 《华南农业大学学报》 CAS CSCD 北大核心 2020年第6期82-91,共10页
【目的】引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。【方法】在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1150幅,人工标注后对原始... 【目的】引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。【方法】在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1150幅,人工标注后对原始图像进行离线数据增强扩充;对Faster R-CNN算法进行适应性改进,在卷积层加入批标准化处理层,引入中心代价函数构建混合代价函数,提高相似病斑的识别精度;采用随机梯度下降算法优化训练模型,分别选取4种预训练的卷积结构作为Faster R-CNN的特征提取网络进行训练,并测试得到最优特征提取网络,利用训练好的模型选取不同天气条件下的测试集进行对比,并将改进Faster R-CNN与未改进的Faster R-CNN和SSD算法进行对比试验。【结果】在改进Faster R-CNN病害识别框架中,以VGG16卷积层结构作为特征提取网络具有更出色的性能,利用测试集图像检验模型,识别结果的平均精度为0.9718,平均召回率为0.9719,F1为0.9718,总体平均准确率可达97.23%;晴天的图像识别效果优于阴天的。改进Faster R-CNN算法与未改进的Faster R-CNN算法相比,平均精度高0.0886,单张图像检测耗时减少0.139 s;与SSD算法相比,平均精度高0.0425,单张图像检测耗时减少0.018 s,表明在大田环境中具有复杂背景的玉米病害智能检测领域,改进Faster R-CNN算法综合性能优于未改进的Faster R-CNN算法和SSD算法。【结论】将改进后的Faster R-CNN算法引入田间复杂条件下的玉米病害智能诊断是可行的,具有较高的准确率和较快的检测速度,能够避免传统人工识别的主观性,该方法为田间玉米病害的及时精准防控提供了依据。 展开更多
关键词 玉米病害 复杂背景 数据增强 区域卷积神经网络 批归一化 混合损失函数
在线阅读 下载PDF
融合MobileNetv2和注意力机制的轻量级人像分割算法 被引量:11
20
作者 王欣 王美丽 边党伟 《计算机工程与应用》 CSCD 北大核心 2022年第7期220-228,共9页
针对人像分割精度不高、效率不佳的问题,提出一种融合MobileNetv2和注意力机制的轻量级人像分割算法,以实现对人像半身图进行分割。在编码器-解码器的U型网络结构的基础上,通过将MobileNetv2作为骨干网络,精简上采样过程,有效地减少了... 针对人像分割精度不高、效率不佳的问题,提出一种融合MobileNetv2和注意力机制的轻量级人像分割算法,以实现对人像半身图进行分割。在编码器-解码器的U型网络结构的基础上,通过将MobileNetv2作为骨干网络,精简上采样过程,有效地减少了网络的参数量,有助于网络的迁移和训练。融合注意力机制的网络结构可更有效地学习人像特征,同时引进混合损失函数,有利于人像边缘像素点分类。该网络结构可选用人像半身图作为输入,并输出对应的图像掩膜。在Human_Matting和EG1800公开数据集上进行了实验,结果表明该算法精度分别达98.3%(Matting)、97.8%(EG1800),相较于PortraitNet预测96.3%(Matting)、95.8%(EG1800)的准确度和DeepLabv3+网络的96.8%(Matting)、96.4%(EG1800)准确度有明显提升,可以清晰地将目标人物和背景分离开。算法IOU指标可达98.6%(Matting)、98.2%(EG1800),在实验平台上分割测试集每张图片平均时间约0.015 s,可应用于轻量化场景中,为场景人像分割提供新的理论基础和研究思路。 展开更多
关键词 人像分割 MobileNetv2 编码器-解码器 注意力机制 混合损失函数
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部