期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于多尺度混合域注意力机制的笔迹鉴别方法 被引量:1
1
作者 熊武 曹从军 +2 位作者 宋雪芳 邵云龙 王旭升 《计算机应用》 CSCD 北大核心 2024年第7期2225-2232,共8页
针对笔迹鉴别任务中图像大面积是背景、笔迹信息稀疏、关键性信息难以捕捉,并且个人笔迹签名风格具有微小变化而刻意模仿的笔迹高度相似,以及公开的中文笔迹数据集的匮乏的问题,通过对注意力机制和孪生网络模型进行改进,提出一种基于多... 针对笔迹鉴别任务中图像大面积是背景、笔迹信息稀疏、关键性信息难以捕捉,并且个人笔迹签名风格具有微小变化而刻意模仿的笔迹高度相似,以及公开的中文笔迹数据集的匮乏的问题,通过对注意力机制和孪生网络模型进行改进,提出一种基于多尺度混合域注意力机制的笔迹鉴别方法(MMDANet)。首先,在有效通道注意力模块上并联一个最大池化层,并将二维条带池化模块的通道数扩展到三维,将改进的有效通道注意力模块和条带池化模块融合生成混合域模块(MDM),解决了笔迹图像大面积是背景、笔迹信息稀疏、细节特征难以提取的问题;其次,利用PANet特征金字塔进行多尺度提取特征,捕获真伪笔迹间的细微差异,采用孪生网络的对比损失与AM-Softmax损失加权融合进行训练,增加类别间的区分度,解决个人笔迹风格变化和真伪笔迹高度相似的问题;最后自制了总体样本数为8000的中文笔迹数据集(CHD)。所提方法在自制中文数据集CHD上的准确率达到了84.25%,且相较于次优的Two-stage SiamNet方法,所提方法在3个外文数据集Cedar、Bengla和Hindi上准确率分别提升了4.53%、1.02%和1.67%。实验结果表明,MMDANet可以更准确地捕获真伪笔迹的细微差异,完成复杂的笔迹鉴别任务。 展开更多
关键词 笔迹鉴别 孪生网络 注意力机制 多尺度 混合
在线阅读 下载PDF
采用混合域注意力机制的无人机识别方法 被引量:8
2
作者 薛珊 卫立炜 +1 位作者 顾宸瑜 吕琼莹 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第10期141-150,共10页
针对在城市公园、广场和大型游乐场等公共环境中,雷达和无线电识别无人机易受到电子干扰、图像识别无人机易受到光线和遮挡物干扰的问题,提出了一种经济便捷、不易受到干扰的运用声音和采用通道空间混合域注意力机制多尺度分组卷积网络(... 针对在城市公园、广场和大型游乐场等公共环境中,雷达和无线电识别无人机易受到电子干扰、图像识别无人机易受到光线和遮挡物干扰的问题,提出了一种经济便捷、不易受到干扰的运用声音和采用通道空间混合域注意力机制多尺度分组卷积网络(ECSANet)的无人机识别方法。首先,建立民用的9大类无人机声音数据集,提取数据集的对数梅尔谱图及其动态特征;其次,为了网络参数量少,避免过拟合,设计了基于分组卷积、通道混洗和残差结构的通道混洗多尺度分组卷积网络(MSSGNet);然后,为了能更多、更有效地提取无人机声音特征,设计了通道空间混合域注意力机制模块(ECSA);最后,将ECSA模块插入MSSGNet网络构成改进的通道空间混合域注意力机制的多尺度分组卷积网络(ECSANet),形成新型声音识别无人机的方法。运用设计的ECSANet网络对自建的民用无人机声音数据集和Urbansound8K环境声音数据集进行了声音识别,识别结果表明:与ResNet18、ResNet34、ResNeXt18和MobileNetV2等基准网络相比,MSSGNet网络参数更少,识别准确率更高,达到了95.1%;ECSA模块可以插入多种网络,在不增加很多参数的情况下令网络模型的识别准确率获得提升,在无人机等声音分类任务上具有很好的效果;与MSSGNet网络相比,改进的ECSANet网络识别准确率能达到95.9%,提高了0.8%,表明了该网络在识别小样本无人机方面的优越性和可行性。 展开更多
关键词 无人机 声音识别 对数梅尔谱图 神经网络 混合注意力机制
在线阅读 下载PDF
基于混合域注意力机制的服装关键点定位及属性预测算法 被引量:3
3
作者 雷冬冬 王俊英 +2 位作者 董方敏 臧兆祥 聂雄锋 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第4期28-35,共8页
针对服装形变和模特复杂姿态影响服装视觉分析准确率的问题,提出一个基于混合域注意力机制的服装关键点定位与属性预测算法,该算法利用循环十字交叉注意力(recurrent criss-cross attention,RCCA)模块得到服装图像的每个像素的上下文信... 针对服装形变和模特复杂姿态影响服装视觉分析准确率的问题,提出一个基于混合域注意力机制的服装关键点定位与属性预测算法,该算法利用循环十字交叉注意力(recurrent criss-cross attention,RCCA)模块得到服装图像的每个像素的上下文信息,从而捕获服装关键点之间潜在的空间几何关系,再融合服装图像的空间联系和通道交互信息来获得更好的服装关键点定位和属性预测效果。服装的空间特征由空间注意力分支网络在关键点热图的基础上学习得到,而通道交互信息通过局部跨通道交互策略生成通道注意力来捕获。试验结果表明,所提算法降低了服装关键点定位的归一化误差,并在一定程度上提高了服装的分类与属性预测效果。 展开更多
关键词 服装关键点定位 属性预测 混合注意力机制 非局部空间连接 局部跨通道交互
在线阅读 下载PDF
基于混合域注意力YOLOv4的输送带纵向撕裂多维度检测 被引量:9
4
作者 李飞 胡坤 +2 位作者 张勇 王文善 蒋浩 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第11期2156-2167,共12页
针对输送带纵向撕裂目标检测维度单一、模型复杂度高等问题,提出一种高效的MobileNetv3及YOLOv4集成网络输送带纵向撕裂多维度实时检测方法.基于YOLOv4目标识别算法,通过将轻量化网络Mobile-Netv3代替CSPDarknet53作为骨干网络,结合高... 针对输送带纵向撕裂目标检测维度单一、模型复杂度高等问题,提出一种高效的MobileNetv3及YOLOv4集成网络输送带纵向撕裂多维度实时检测方法.基于YOLOv4目标识别算法,通过将轻量化网络Mobile-Netv3代替CSPDarknet53作为骨干网络,结合高效通道域ECA模块和空间域注意力机制(STNet)构建混合域注意力网络(ECSNet),改进了MobileNetv3嵌入ECSNet,并且提升了模型对空间和通道的关注度.引入深度可分离卷积块代替网络中3*3卷积,并将YOLOv4的检测头(Prediction Heads)缩减为2种尺度,轻量化模型降低网络复杂度和训练难度,完成ECSMv3_YOLOv4模型的搭建,使用K-means聚类6个Anchors预测目标框高宽,提高网络对表面撕裂的检测性能.研制带式输送机多维度智能巡检样机,采集制作输送带多维度面的纵向撕裂数据集,开展网络模型的训练、测试、识别和定位实验.结果表明,提出算法在测试集中的平均识别准确率为97.8%,识别速度为37帧/s,模型的计算量和参数量为4.882 G和8.851 M,通过试验不同的网络模型效果和改变光照强度,该方法体现出检测精度高、速度快和轻量化等优点,具备更强的适应性和抗干扰能力. 展开更多
关键词 纵向撕裂 多维度检测 MobileNetv3 混合注意力机制 YOLOv4 轻量化
在线阅读 下载PDF
融合注意力机制的恶意代码家族分类研究 被引量:9
5
作者 王润正 高见 +1 位作者 仝鑫 杨梦岐 《计算机科学与探索》 CSCD 北大核心 2021年第5期881-892,共12页
近年来,随着恶意代码家族变种的多样化和混淆等对抗手段的不断加强,传统的恶意代码检测方法难以取得较好的分类效果。鉴于此,提出了一种融合注意力机制的恶意代码家族分类模型。首先,使用逆向反汇编工具获取恶意样本的各区段特征,并利... 近年来,随着恶意代码家族变种的多样化和混淆等对抗手段的不断加强,传统的恶意代码检测方法难以取得较好的分类效果。鉴于此,提出了一种融合注意力机制的恶意代码家族分类模型。首先,使用逆向反汇编工具获取恶意样本的各区段特征,并利用可视化技术将各区段转化为RGB彩色图像的各通道;其次,引入通道域和空间域注意力机制来构建基于混合域注意力机制的深度可分离卷积网络,从通道和空间两个维度提取恶意样本的图像纹理特征;最后,选取九类恶意代码家族对模型进行训练和测试。实验结果表明,使用单一区段特征对恶意代码家族分类的准确率较低,采用融合特征能够有效地区分各类恶意代码家族,同时该模型相比于传统的神经网络模型取得了更好的分类效果,模型的分类准确率达到了98.38%。 展开更多
关键词 恶意家族 多分类 混合注意力机制 深度可分离卷积 融合特征
在线阅读 下载PDF
大数据驱动的非球面光学表面缺陷检测研究
6
作者 彭雪梅 黄建军 《激光杂志》 北大核心 2025年第4期252-256,共5页
光学技术的快速发展使非球面光学元件在成像、通信等领域的应用日益广泛,其表面缺陷检测成为确保产品质量的关键环节。为满足更高精度的检测需求,设计了大数据驱动的非球面光学表面缺陷检测方法。在大数据驱动下,设计非球面光学表面图... 光学技术的快速发展使非球面光学元件在成像、通信等领域的应用日益广泛,其表面缺陷检测成为确保产品质量的关键环节。为满足更高精度的检测需求,设计了大数据驱动的非球面光学表面缺陷检测方法。在大数据驱动下,设计非球面光学表面图像采集装置,由显微光学成像系统、分光棱镜、光纤照明、机械调整台、电动转台构成,实施非球面光学表面图像的大数据采集。在大数据驱动下,采用小波阈值去噪方法对采集的非球面光学表面缺陷图像实施去噪处理。选定YOLOv3作为基础架构,对三个方向实施针对性改进,通过改进后的YOLOv3模型实现非球面光学表面缺陷检测。测试结果表明,所设计的方法对于5种实验元件的表面缺陷平均尺寸测量偏差较低,尤其是对于抛光非球面棱镜的表面缺陷,其平均尺寸测量偏差最低。此外,该方法对于五种实验元件的表面伪缺陷响应系数较低,意味着它不容易受到伪缺陷的影响。 展开更多
关键词 大数据技术 非球面光学元件 表面缺陷检测 改进YOLOv3模型 cbam混合注意力机制
在线阅读 下载PDF
基于改进YOLOv4的GIS红外特征识别与温度提取方法 被引量:12
7
作者 刘江 关向雨 +1 位作者 温跃泉 吕朝伟 《电力工程技术》 北大核心 2023年第1期162-168,共7页
对气体绝缘开关设备(gas insulated switchgear, GIS)典型部件的目标识别和温度提取是实现对设备发热状态红外智能检测的关键。文中提出一种基于混合域注意力机制(convolutional block attention module, CBAM)的改进YOLOv4算法,可实现... 对气体绝缘开关设备(gas insulated switchgear, GIS)典型部件的目标识别和温度提取是实现对设备发热状态红外智能检测的关键。文中提出一种基于混合域注意力机制(convolutional block attention module, CBAM)的改进YOLOv4算法,可实现对GIS母线、隔离开关等部件的快速目标检测和热点温度提取。首先,在某变电站现场采集原始红外图像,对图像进行锐化处理和部位标记,构建包含GIS典型部件的红外数据集。然后,利用深度可分离卷积网络降低模型参数量,并融入CBAM优化模型的识别能力,在此基础上构建基于改进YOLOv4的GIS红外部件目标快速检测算法。最后,采用灰阶差值方法对检测到的GIS典型目标部件进行热区温度值提取。结果表明,所提算法在GIS红外特征数据集上可以达到每秒31.5帧的识别速度和82.3%的识别准确率,明显优于其他目标算法,且GIS各部件的温升计算值与实测值误差在±1℃内。该算法可部署在无人机和巡检小车等边缘智能终端,实现对现场GIS设备温升状态的精细化识别和快速诊断,提升GIS设备健康状态管理数字化和智能化水平。 展开更多
关键词 气体绝缘开关设备(GIS) YOLOv4 红外图像 温升提取 混合注意力机制(cbam) 轻量级网络
在线阅读 下载PDF
融合边缘监督的改进Deeplabv3+水下鱼类分割方法 被引量:5
8
作者 田志新 廖薇 +3 位作者 茅健 吴建民 袁泉 徐震 《电子测量与仪器学报》 CSCD 北大核心 2022年第10期208-216,共9页
水下环境鱼类分割是实现体长测量、体重估算和群体计数等智能化测量的关键技术,为了提高分割的准确性,提出一种融合边缘监督的改进Deeplabv3+鱼类分割方法。编码部分采用更少的下采样次数,浅层增加卷积块注意力机制(convolutional block... 水下环境鱼类分割是实现体长测量、体重估算和群体计数等智能化测量的关键技术,为了提高分割的准确性,提出一种融合边缘监督的改进Deeplabv3+鱼类分割方法。编码部分采用更少的下采样次数,浅层增加卷积块注意力机制(convolutional block attention module,CBAM),以减少信息丢失并增强浅层语义信息;通过设计混合膨胀卷积(hybrid dilated convolution,HDC)改进空洞空间卷积池化金字塔(atrous spatial pyramid pooling,ASPP)模块,提取深层特征;在解码输出部分结合Canny边缘检测算子引入边缘监督,通过边缘损失函数来获得边缘预测和边缘标签的误差以更好地学习边缘特征;最后根据不同类像素比率引入优化的损失函数,进一步提升模型的语义分割性能。该方法在VOC2012数据集上mIoU达到84.56%,较Deeplabv3+方法提升了3.27%,验证了其泛化能力。在DeepFish数据集上做消融实验,mIoU高达93.66%,均高于Deeplabv3+、Unet和PSPNet等常见方法。该研究提升了水下环境鱼类分割的精度,可为水产养殖智能化提供支持。 展开更多
关键词 鱼类分割 边缘监督 Deeplabv3+ cbam注意力机制 混合膨胀卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部