期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
针对混合变量优化问题的协同进化蚁群优化算法
被引量:
5
1
作者
韦铭燕
陈彧
张亮
《计算机应用》
CSCD
北大核心
2021年第5期1412-1418,共7页
针对由连续变量和分类变量构成的混合变量优化问题(MVOP),采用协同进化策略来对混合变量决策空间进行搜索,提出了一种协同进化蚁群优化算法(CACOAMV)。CACOAMV分别采用连续和离散蚁群优化(ACO)策略生成连续和分类变量子种群,通过合作者...
针对由连续变量和分类变量构成的混合变量优化问题(MVOP),采用协同进化策略来对混合变量决策空间进行搜索,提出了一种协同进化蚁群优化算法(CACOAMV)。CACOAMV分别采用连续和离散蚁群优化(ACO)策略生成连续和分类变量子种群,通过合作者来对连续和分类变量子向量进行评价,分别对连续和分类变量子种群进行更新来实现对混合变量决策空间的高效协同搜索。进一步地,利用信息素平滑机制增强对分类变量解空间的全局探索能力,并设计了一种面向协同进化框架的"最佳+随机合作者"的重启策略来提高协同搜索效率。与混合变量的蚁群(ACOMV)算法和种群规模线性变小的差分进化-蚁群混合变量优化算法(L-SHADEACO)的比较表明,CACOAMV能够进行更有效的局部开发,从而提高最终结果在目标空间中的近似精度;与基于集合的混合变量差分进化算法(DEMV)相比较,CACOAMV能够在决策空间中更好地逼近全局最优解,具有更好的全局探索能力。综上,采用协同进化机制的CACOAMV能有效保持全局探索和局部开发的平衡,从而具有更好的寻优性能。
展开更多
关键词
混合变量优化问题
协同进化
分类
变量
蚁群
优化
随机启发式算法
在线阅读
下载PDF
职称材料
基于协同进化的混合变量多目标粒子群优化算法求解无人机协同多任务分配问题
被引量:
45
2
作者
王峰
张衡
+1 位作者
韩孟臣
邢立宁
《计算机学报》
EI
CAS
CSCD
北大核心
2021年第10期1967-1983,共17页
无人机多机协同控制系统近年来已被广泛地应用在军事打击、海洋监测、陆地航拍和灾情探测等领域.针对无人机协同多任务分配问题,为了更加准确地描述无人机协同多任务分配场景,本文考虑实际应用场景下的多种复杂约束,并以无人机飞行总航...
无人机多机协同控制系统近年来已被广泛地应用在军事打击、海洋监测、陆地航拍和灾情探测等领域.针对无人机协同多任务分配问题,为了更加准确地描述无人机协同多任务分配场景,本文考虑实际应用场景下的多种复杂约束,并以无人机飞行总航程最少和任务完成时间最短为优化目标,构建了混合变量多约束的无人机协同多任务分配问题模型M-CMTAP.为了高效求解上述模型,本文提出一种基于协同进化的混合变量多目标粒子群优化算法C-MOPSO.C-MOPSO采用基于任务分配和路径规划的编码方法表示无人机的任务分配结果和路径规划结果及基于约束处理的可行解初始化方法生成可行粒子;同时利用基于结构学习的重组策略对粒子进行更新以提高种群的多样性和收敛性;并引入协同进化策略在两个子种群之间进行合作进化以提高算法的搜索效率.根据无人机和目标的分布状态设计4个代表性的测试实例并验证算法性能,实验结果表明,与其他采用协同进化策略的算法相比,所提算法在解的收敛性和解集多样性上均具有显著的性能优势.
展开更多
关键词
协同进化
粒子群
优化
算法
混合变量优化问题
多目标
优化
无人机任务分配
问题
在线阅读
下载PDF
职称材料
题名
针对混合变量优化问题的协同进化蚁群优化算法
被引量:
5
1
作者
韦铭燕
陈彧
张亮
机构
武汉理工大学理学院
出处
《计算机应用》
CSCD
北大核心
2021年第5期1412-1418,共7页
基金
国家自然科学基金面上项目(61573012)
中央高校基本科研业务费专项(2020IB006)。
文摘
针对由连续变量和分类变量构成的混合变量优化问题(MVOP),采用协同进化策略来对混合变量决策空间进行搜索,提出了一种协同进化蚁群优化算法(CACOAMV)。CACOAMV分别采用连续和离散蚁群优化(ACO)策略生成连续和分类变量子种群,通过合作者来对连续和分类变量子向量进行评价,分别对连续和分类变量子种群进行更新来实现对混合变量决策空间的高效协同搜索。进一步地,利用信息素平滑机制增强对分类变量解空间的全局探索能力,并设计了一种面向协同进化框架的"最佳+随机合作者"的重启策略来提高协同搜索效率。与混合变量的蚁群(ACOMV)算法和种群规模线性变小的差分进化-蚁群混合变量优化算法(L-SHADEACO)的比较表明,CACOAMV能够进行更有效的局部开发,从而提高最终结果在目标空间中的近似精度;与基于集合的混合变量差分进化算法(DEMV)相比较,CACOAMV能够在决策空间中更好地逼近全局最优解,具有更好的全局探索能力。综上,采用协同进化机制的CACOAMV能有效保持全局探索和局部开发的平衡,从而具有更好的寻优性能。
关键词
混合变量优化问题
协同进化
分类
变量
蚁群
优化
随机启发式算法
Keywords
Mixed-Variable Optimization Problem(MVOP)
coevolution
categorical variable
Ant Colony Optimization(ACO)
Random Heuristics Algorithm(RHA)
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
基于协同进化的混合变量多目标粒子群优化算法求解无人机协同多任务分配问题
被引量:
45
2
作者
王峰
张衡
韩孟臣
邢立宁
机构
武汉大学计算机学院
国防科技大学系统工程学院
出处
《计算机学报》
EI
CAS
CSCD
北大核心
2021年第10期1967-1983,共17页
基金
国家自然科学基金(61773296,61773120)
高等学校全国优秀博士学位论文作者专项资金(2014-92)
广东省普通高校创新团队项目(2018KCXTD031)资助.
文摘
无人机多机协同控制系统近年来已被广泛地应用在军事打击、海洋监测、陆地航拍和灾情探测等领域.针对无人机协同多任务分配问题,为了更加准确地描述无人机协同多任务分配场景,本文考虑实际应用场景下的多种复杂约束,并以无人机飞行总航程最少和任务完成时间最短为优化目标,构建了混合变量多约束的无人机协同多任务分配问题模型M-CMTAP.为了高效求解上述模型,本文提出一种基于协同进化的混合变量多目标粒子群优化算法C-MOPSO.C-MOPSO采用基于任务分配和路径规划的编码方法表示无人机的任务分配结果和路径规划结果及基于约束处理的可行解初始化方法生成可行粒子;同时利用基于结构学习的重组策略对粒子进行更新以提高种群的多样性和收敛性;并引入协同进化策略在两个子种群之间进行合作进化以提高算法的搜索效率.根据无人机和目标的分布状态设计4个代表性的测试实例并验证算法性能,实验结果表明,与其他采用协同进化策略的算法相比,所提算法在解的收敛性和解集多样性上均具有显著的性能优势.
关键词
协同进化
粒子群
优化
算法
混合变量优化问题
多目标
优化
无人机任务分配
问题
Keywords
co-evolution
particle swarm optimization
mixed-variable optimization problem
multi-objective optimization
UAV cooperative multi-task assignment problem
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
针对混合变量优化问题的协同进化蚁群优化算法
韦铭燕
陈彧
张亮
《计算机应用》
CSCD
北大核心
2021
5
在线阅读
下载PDF
职称材料
2
基于协同进化的混合变量多目标粒子群优化算法求解无人机协同多任务分配问题
王峰
张衡
韩孟臣
邢立宁
《计算机学报》
EI
CAS
CSCD
北大核心
2021
45
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部