期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于混合卡尔曼粒子滤波的电动汽车锂电池荷电状态估计
被引量:
2
1
作者
张子超
邹必昌
《汽车工程师》
2024年第3期28-34,共7页
针对动力电池荷电状态(SOC)估计中,传统扩展卡尔曼滤波(EKF)忽略高阶项、粒子滤波(PF)存在重采样过程中的粒子退化与多样性丧失的问题,提出了改进的混合卡尔曼粒子滤波(MKPF)算法。首先采用扩展卡尔曼滤波产生系统的状态估计,然后使用...
针对动力电池荷电状态(SOC)估计中,传统扩展卡尔曼滤波(EKF)忽略高阶项、粒子滤波(PF)存在重采样过程中的粒子退化与多样性丧失的问题,提出了改进的混合卡尔曼粒子滤波(MKPF)算法。首先采用扩展卡尔曼滤波产生系统的状态估计,然后使用无迹卡尔曼滤波器重复这一过程,将扩展卡尔曼滤波和无迹卡尔曼滤波获得的状态估计共同作为粒子滤波建议分布,并通过权值排序进行粒子优胜劣汰。仿真和试验结果表明,所提出算法的SOC估算最大误差为1.2%,优于PF、EKF、UKF算法的SOC估算精度。
展开更多
关键词
锂电池
荷电状态
粒子
滤波
混合卡尔曼粒子滤波
在线阅读
下载PDF
职称材料
题名
基于混合卡尔曼粒子滤波的电动汽车锂电池荷电状态估计
被引量:
2
1
作者
张子超
邹必昌
机构
长江大学
出处
《汽车工程师》
2024年第3期28-34,共7页
文摘
针对动力电池荷电状态(SOC)估计中,传统扩展卡尔曼滤波(EKF)忽略高阶项、粒子滤波(PF)存在重采样过程中的粒子退化与多样性丧失的问题,提出了改进的混合卡尔曼粒子滤波(MKPF)算法。首先采用扩展卡尔曼滤波产生系统的状态估计,然后使用无迹卡尔曼滤波器重复这一过程,将扩展卡尔曼滤波和无迹卡尔曼滤波获得的状态估计共同作为粒子滤波建议分布,并通过权值排序进行粒子优胜劣汰。仿真和试验结果表明,所提出算法的SOC估算最大误差为1.2%,优于PF、EKF、UKF算法的SOC估算精度。
关键词
锂电池
荷电状态
粒子
滤波
混合卡尔曼粒子滤波
Keywords
Lithium battery
SOC
Particle Filter(PF)
Mixed Kalman Particle Filter(MKPF)
分类号
U469.72 [机械工程—车辆工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于混合卡尔曼粒子滤波的电动汽车锂电池荷电状态估计
张子超
邹必昌
《汽车工程师》
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部