期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于迁移学习算法的深部爆破振动速度预测 被引量:4
1
作者 张西良 焦灏恺 李二宝 《中国安全科学学报》 CAS CSCD 北大核心 2023年第6期64-72,共9页
为了更好地预测深部矿山爆破振动速度,针对深部爆破振动速度预测中存在的样本量小、数据分布同浅部爆破不同的问题,将浅部地下矿山爆破数据中有用的知识迁移至深部矿山爆破振动速度预测模型中,提出一种逻辑回归迁移学习算法(LR-TrAdaboo... 为了更好地预测深部矿山爆破振动速度,针对深部爆破振动速度预测中存在的样本量小、数据分布同浅部爆破不同的问题,将浅部地下矿山爆破数据中有用的知识迁移至深部矿山爆破振动速度预测模型中,提出一种逻辑回归迁移学习算法(LR-TrAdaboost),提升模型的样本容量及预测准确率;以某铜矿深部爆破振动速度预测为研究对象,结合该铜矿27条深部爆破数据以及梅山矿等5个地下金属矿204条浅部爆破数据,利用支持向量回归机(SVR)、回归迁移学习算法(TrAdaboost-R 2)以及LR-TrAdaboost算法分别进行预测和对比。结果表明:3种算法的模型分数分别为0.24、0.38、0.81,均方根误差(RMSE)分别为0.152、0.107、0.06,LR-TrAdaboost算法预测误差相比SVR、TrAdaboost-R^(2)分别降低了60.5%、43.9%;同时,LR-TrAdaboost在迭代次数为50时已经收敛,而TrAdaboost-R^(2)在迭代次数100次后才收敛,收敛速度前者是后者的2倍;LR-TrAdaboost算法的预测性能更好。 展开更多
关键词 深部爆破振动速度 逻辑回归迁移学习算法(LR-TrAdaboost) 预测误差 支持向量回归机(SVR) 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部