Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh...Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.展开更多
Once an opening is created in deep underground,the stresses surrounding the opening will be redistributed,inducing a gradient stress field.To understand how the ground rock in such a gradient stress field responses to...Once an opening is created in deep underground,the stresses surrounding the opening will be redistributed,inducing a gradient stress field.To understand how the ground rock in such a gradient stress field responses to dynamic stress loading,the gradient stress distribution at a circular opening was first analyzed and the propagation of 1D stress wave in rock mass under gradient stress field was theoretically derived.By using an implicit to explicit solution method in LS-DYNA code,the dynamic mechanical behaviors of rock in gradient stress field were numerically investigated.The results indicate that the damage is mainly produced at or near the free face,partly due to the straight action of compressive stress wave and the tensile stress wave generated at the free face.The range of the induced damage zone is narrowed under the conditions of higher gradient stress rate and lower dynamic stress amplitude.However,under lower gradient stress field and higher dynamic stress,the damage becomes severer and wider with discontinuous failure regions.展开更多
基金National Science Foundation of Zhejiang under Contract(LY23E010001)。
文摘Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.
基金Projects(51904101,51774131,51604109)supported by the National Natural Science Foundation of ChinaProject(2017M622524)supported by the Postdoctoral Science Foundation of China。
文摘Once an opening is created in deep underground,the stresses surrounding the opening will be redistributed,inducing a gradient stress field.To understand how the ground rock in such a gradient stress field responses to dynamic stress loading,the gradient stress distribution at a circular opening was first analyzed and the propagation of 1D stress wave in rock mass under gradient stress field was theoretically derived.By using an implicit to explicit solution method in LS-DYNA code,the dynamic mechanical behaviors of rock in gradient stress field were numerically investigated.The results indicate that the damage is mainly produced at or near the free face,partly due to the straight action of compressive stress wave and the tensile stress wave generated at the free face.The range of the induced damage zone is narrowed under the conditions of higher gradient stress rate and lower dynamic stress amplitude.However,under lower gradient stress field and higher dynamic stress,the damage becomes severer and wider with discontinuous failure regions.