期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度高斯过程回归的术中失血量和血红蛋白损失量估计
1
作者 钟坤华 陈芋文 +4 位作者 秦小林 张力戈 李雨捷 胡小艳 易斌 《计算机应用》 CSCD 北大核心 2023年第S02期306-311,共6页
动态、准确地估计失血量对围手术期管理非常重要,但测量术中失血量是一项困难的任务,特别是当血液被医用纱布吸收时。针对上述情况,以浸血医用纱布图像为研究对象,提出一种基于密集连接卷积网络(DenseNet)的深度多任务高斯过程回归(DMG... 动态、准确地估计失血量对围手术期管理非常重要,但测量术中失血量是一项困难的任务,特别是当血液被医用纱布吸收时。针对上述情况,以浸血医用纱布图像为研究对象,提出一种基于密集连接卷积网络(DenseNet)的深度多任务高斯过程回归(DMGPR)方法,以估计术中失血量和血红蛋白(Hb)损失量。DMGPR方法包括两部分:用于自动特征提取的密集连接卷积网络(DenseNet)和用于失血量及Hb损失量估计的多任务高斯回归过程(MGPR)。在手术室正常光照条件下,采集了569张浸血纱布图像,并对这些图像进行在线扩充,构建实验数据集。以决定系数(R2)、均方误差(MSE)和平均绝对误差(MAE)为性能指标,对DMGPR方法进行评估和对比。在失血量估计方面,DMGPR方法的R2、MSE和MAE分别为0.971、0.080和0.151;而在Hb损失量估计方面,DMGPR方法的相应结果分别为0.950、0.217和0.292。实验结果表明,DMGPR可以动态、准确地估计术中失血量和Hb损失量,并且比其他对比方法具有更好的性能,更适合于主要使用医用纱布和小到中度失血的手术。 展开更多
关键词 术中失血量 密集连接卷积网络 深度高斯过程回归 特征提取 血红蛋白
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部