期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于动态蛇形卷积和非跨步卷积的绝缘子缺陷检测 被引量:3
1
作者 尹向雷 解永芳 +1 位作者 屈少鹏 苏妮 《电力系统保护与控制》 EI CSCD 北大核心 2024年第20期177-187,共11页
针对复杂场景下绝缘子缺陷检测存在小目标识别困难的问题,提出基于动态蛇形卷积和非跨步卷积的绝缘子缺陷检测方法。首先,算法引入动态蛇形卷积,构造出符合绝缘子特点的特征提取模块,提高对绝缘子及其缺陷的特征提取能力。然后,采用“空... 针对复杂场景下绝缘子缺陷检测存在小目标识别困难的问题,提出基于动态蛇形卷积和非跨步卷积的绝缘子缺陷检测方法。首先,算法引入动态蛇形卷积,构造出符合绝缘子特点的特征提取模块,提高对绝缘子及其缺陷的特征提取能力。然后,采用“空间-深度”的非跨步卷积,减少融合过程中的特征丢失。最后,为进一步降低模型复杂度,对模型进行通道剪枝,减少冗余部分。在绝缘子缺陷数据集上进行实验对比,与基准算法相比,绝缘子的破损、污闪以及自爆缺陷的识别率分别提升了5.7%、2.4%和0.8%,改进算法在绝缘子的检测率上提升了0.5%。同时平均精度均值较改进前提升了2.3%,模型大小降低了50.07%。实验结果表明,改进算法在提高绝缘子缺陷小目标检测精度的同时,有效降低了模型大小,对绝缘子缺陷检测的研究具有一定的参考和应用价值。 展开更多
关键词 绝缘子 缺陷检测 YOLOv7 动态蛇形卷积 “空间-深度”的跨步卷积
在线阅读 下载PDF
基于SSE-YOLO的红外小目标检测算法
2
作者 大妹 姜麟 +1 位作者 陶友凤 胡淼 《红外技术》 北大核心 2025年第4期475-483,共9页
针对红外成像面积小、分辨率低、易被遮挡导致漏检、检测精度低等问题,本文提出了一种基于SSE-YOLO的红外小目标检测算法。首先在YOLOv8s的基础上引入深度非跨步卷积模块,避免检测过程中细粒度信息的丢失并提高特征学习的效率;其次在特... 针对红外成像面积小、分辨率低、易被遮挡导致漏检、检测精度低等问题,本文提出了一种基于SSE-YOLO的红外小目标检测算法。首先在YOLOv8s的基础上引入深度非跨步卷积模块,避免检测过程中细粒度信息的丢失并提高特征学习的效率;其次在特征提取阶段增加专门针对小目标的检测层,以提升模型对红外小目标的提取能力;此外设计了一种高效的双注意力机制(efficient dual-attention mechanism,EDAM),自适应地学习每个通道和空间位置的重要性,从而更好地捕捉图像中的关键信息;然后使用Shape_IoU损失函数来聚焦边框自身形状与自身尺度,进一步提高边框回归的精确度;最后在FLIR数据集和艾睿光电公司拍摄的数据集上进行了一系列实验。结果表明:本文所提方法在两种数据集上的平均精度分别达到了89.8%与92.1%,相比于原始的模型分别提高了3.3%与2.9%。 展开更多
关键词 YOLOv8s 红外小目标检测 深度非跨步卷积 Shape_IoU损失函数 双注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部