期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于双因子分层约束的深度非负矩阵分解用于高光谱解混
1
作者 屈克文 罗小娟 保文星 《液晶与显示》 北大核心 2025年第10期1490-1508,共19页
高光谱解混(HU)是解决混合像元和表征土地覆盖成分的关键技术。尽管深度非负矩阵分解(DNMF)在HU中表现优异,但现有方法多聚焦于丰度建模,忽视了端元的多层次特征提取,且对其非线性表征能力不足,限制了解混精度。为此,本文提出一种面向... 高光谱解混(HU)是解决混合像元和表征土地覆盖成分的关键技术。尽管深度非负矩阵分解(DNMF)在HU中表现优异,但现有方法多聚焦于丰度建模,忽视了端元的多层次特征提取,且对其非线性表征能力不足,限制了解混精度。为此,本文提出一种面向端元层次分析的深度NMF框架,引入端元子空间的层间正交性约束和丰度细化的动态稀疏正则化。首先,通过多层端元分解增强光谱的非线性特征表达;其次,设计一种最小距离引导的子空间正交机制提升端元可分性,并与动态加权稀疏性策略协同,提升丰度估计的空间一致性;最后,以预训练粗初始化和跨层反向传播精调为核心,构建两阶段的分层优化算法。在2个合成数据集和4个真实数据集上进行实验,结果显示,本文方法在不同信噪比下的SAD为0.004 2~0.078 2,RMSE为0.014 0~0.092 5,分别优于对比方法 1.42%~5.64%和1.87%~6.48%,验证了其准确性与鲁棒性。 展开更多
关键词 高光谱解混 深度非负矩阵分解 端元判别 正交约束 分层稀疏正则化
在线阅读 下载PDF
深度非负矩阵分解的链路预测方法研究 被引量:2
2
作者 蔡菲 张鑫 +2 位作者 牟晓慧 陈杰 蔡珣 《计算机工程与应用》 CSCD 北大核心 2020年第15期153-161,共9页
链路预测是根据现有的网络结构信息预测潜在的边,其已成为复杂网络中的热点之一。在链路预测中,传统非负矩阵分解直接将原始网络映射到隐空间中,不能充分挖掘复杂网络的深层隐结构信息,导致在稀疏网络中预测能力有限。针对以上问题,提... 链路预测是根据现有的网络结构信息预测潜在的边,其已成为复杂网络中的热点之一。在链路预测中,传统非负矩阵分解直接将原始网络映射到隐空间中,不能充分挖掘复杂网络的深层隐结构信息,导致在稀疏网络中预测能力有限。针对以上问题,提出一种基于深度非负矩阵分解的链路预测方法(Deep Non-negative Matrix Factorization,DNMF)。通过对系数矩阵多次分解,得到一组基矩阵和一个系数矩阵相乘,进而构建深度隐特征模型的目标函数。采用两阶段法去调整训练参数,即在预训练阶段通过逐层分解作为预分解结果,在微调阶段整体微调训练参数。根据微调训练后的基矩阵和系数矩阵,计算网络相似矩阵。该方法可以在保证真实网络的深层隐结构信息表达的同时使其可以获得更加全面的网络结构信息。通过对10个典型实际网络进行实验,表明该方法比现有经典链路预测方法具有更好的预测性能。 展开更多
关键词 复杂网络 深度非负矩阵分解 链路预测 隐特征
在线阅读 下载PDF
基于非对称多模态学习的阿尔茨海默症辅助诊断算法研究 被引量:2
3
作者 潘伟博 汪海涛 +1 位作者 姜瑛 陈星 《小型微型计算机系统》 CSCD 北大核心 2021年第6期1213-1218,共6页
针对传统阿尔茨海默症辅助诊断算法使用单一模态数据,以及丢弃缺失模态样本的问题,本文提出了一种基于非对称多模态学习的阿尔茨海默症辅助诊断算法.本算法包含两阶段任务,第1阶段利用磁共振成像(Magnetic Resonance Imaging,MRI)和正... 针对传统阿尔茨海默症辅助诊断算法使用单一模态数据,以及丢弃缺失模态样本的问题,本文提出了一种基于非对称多模态学习的阿尔茨海默症辅助诊断算法.本算法包含两阶段任务,第1阶段利用磁共振成像(Magnetic Resonance Imaging,MRI)和正电子发射断层扫描成像(Positron Emission Tomography,PET)之间的潜在联系,使用3D循环生成对抗神经网络,训练出一个特定的PET生成模型,补全缺失的PET数据.第2阶段,通过多模态深度非负矩阵分解模型,将MRI和PET的特征融合/学习过程和辅助诊断集成到一个框架中进行分类.这可以消除神经影像特征与疾病标签之间的差异,并提高辅助诊断性能.本文对ADNI数据库中1457名受试者进行的实验结果表明,本文提出的算法在阿尔茨海默症识别和轻度认知障碍转换预测中均表现出良好的性能. 展开更多
关键词 深度非负矩阵分解 循环生成对抗神经网络 多模态学习 深度学习 阿尔茨海默症
在线阅读 下载PDF
基于Deep-Semi-NMF的苹果斑点落叶病检测方法 被引量:1
4
作者 傅卓军 胡政 +2 位作者 邓阳君 龙陈锋 朱幸辉 《智慧农业(中英文)》 CSCD 2024年第6期144-154,共11页
[目的/意义]苹果斑点落叶病易导致苹果树叶过早脱落,从而影响苹果品质和产量。因此,如何准确检测此病一直是苹果树病害精准防治的热点问题。由于逆光等因素影响,传统基于图像分割的病斑检测方法难以在复杂背景下准确检测病斑区域边界,... [目的/意义]苹果斑点落叶病易导致苹果树叶过早脱落,从而影响苹果品质和产量。因此,如何准确检测此病一直是苹果树病害精准防治的热点问题。由于逆光等因素影响,传统基于图像分割的病斑检测方法难以在复杂背景下准确检测病斑区域边界,亟需发展苹果斑点落叶病检测新方法,助力苹果树病害精准防治。[方法]针对上述问题,本研究从图像异常检测的角度出发,考虑复杂背景干扰,采用深度半非负矩阵分解理论,结合鲁棒性好的马氏距离度量,提出一种新的深度半非负矩阵分解的马氏距离异常检测方法(Deep Semi-Non-Negative Ma⁃trix Factorization-Based Mahalanobis Distance-Anomaly Detector,DSNMFMAD)。该方法首先利用深度非负矩阵分解(Deep Semi-Non-Negative Matrix Factorization,DSNMF)提取图像中低秩的背景部分和稀疏的异常部分。然后采用基于奇异值分解特征子空间的马氏距离构建病斑检测器,检测器通过计算异常部分每个像元的异常度来标记病斑。最后,分别构建了实验室和自然条件下的两个苹果斑点落叶病数据集,用以验证提出方法的有效性。[结果和讨论]DSNMFMAD在实验室条件和自然条件下对苹果斑点落叶病的识别准确率分别达到了99.8%和87.8%;平均检测速度为0.087和0.091 s/幅。相较于4种经典的异常检测方法和1种深度学习模型,本研究所提出方法的检测准确率在实验室条件下分别提高了0.2%、37.9%、10.3%、0.4%和24.5%;在自然条件下分别提高了2.5%、32.7%、5%、14.8%和3.5%。[结论]本研究提出的DSNMFMAD能够通过DSNMF有效地将图像中的异常部分提取出来,并利用构建的病斑检测器准确地将苹果斑点落叶病位置检测出来。即使在复杂背景条件下,该方法亦获得了比对比方法更高的检测准确度,展现出了优异的病斑检测性能,为苹果斑点落叶病的检测与防治提供了技术参考依据。 展开更多
关键词 图像分割 苹果斑点落叶病 异常检测 深度矩阵分解 马氏距离
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部