针对农业领域文本信息密度大、语义模糊、特征稀疏的特点,提出一种基于MacBERT(MLM as correction-BERT)、深度金字塔卷积网络(DPCNN)和注意力机制(Attention)的农业文本分类模型,命名为MacBERT—DPCNN—Attention(MDA)。首先,使用MacB...针对农业领域文本信息密度大、语义模糊、特征稀疏的特点,提出一种基于MacBERT(MLM as correction-BERT)、深度金字塔卷积网络(DPCNN)和注意力机制(Attention)的农业文本分类模型,命名为MacBERT—DPCNN—Attention(MDA)。首先,使用MacBERT模型充分提取农业类文本内容的上下文信息,强化文本的语义特征表示。然后,DPCNN模型通过其多层卷积神经网络和池化操作,有效捕获文本的局部特征。最后,注意力机制进一步增强农业文本序列的特征表达。结果表明,与其他主流模型如BERT—DPCNN、BERT—CNN、BERT—RNN相比,MDA模型在农业文本分类任务上的精确率提升1.04%以上,召回率提升0.95%以上,F1值提升0.14%以上。表明所提模型在解决农业领域文本分类问题方面的有效性和优越性。展开更多
针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首...针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首先利用ERNIE对数据集进行编码,然后利用改进后的DPCNN和BiGRU同时提取新闻文本的特征,再将两者提取的特征进行拼合并经过Softmax得到最终结果。为了使EGC模型适用于农业新闻分类领域,对DPCNN进行改进,减少它的卷积层以保留更多特征。实验结果表明,与ERNIE相比,EGC模型的精确率、召回率和F1分数别提升了1.47、1.29和1.42个百分点,优于传统分类模型。展开更多
文摘针对农业领域文本信息密度大、语义模糊、特征稀疏的特点,提出一种基于MacBERT(MLM as correction-BERT)、深度金字塔卷积网络(DPCNN)和注意力机制(Attention)的农业文本分类模型,命名为MacBERT—DPCNN—Attention(MDA)。首先,使用MacBERT模型充分提取农业类文本内容的上下文信息,强化文本的语义特征表示。然后,DPCNN模型通过其多层卷积神经网络和池化操作,有效捕获文本的局部特征。最后,注意力机制进一步增强农业文本序列的特征表达。结果表明,与其他主流模型如BERT—DPCNN、BERT—CNN、BERT—RNN相比,MDA模型在农业文本分类任务上的精确率提升1.04%以上,召回率提升0.95%以上,F1值提升0.14%以上。表明所提模型在解决农业领域文本分类问题方面的有效性和优越性。
文摘针对农业新闻目前面临的针对性差、分类不清和数据集缺乏等问题,提出一种基于ERNIE(Enhanced Representation through kNowledge IntEgration)、深度金字塔卷积神经网络(DPCNN)和双向门控循环单元(BiGRU)的农业新闻分类模型——EGC。首先利用ERNIE对数据集进行编码,然后利用改进后的DPCNN和BiGRU同时提取新闻文本的特征,再将两者提取的特征进行拼合并经过Softmax得到最终结果。为了使EGC模型适用于农业新闻分类领域,对DPCNN进行改进,减少它的卷积层以保留更多特征。实验结果表明,与ERNIE相比,EGC模型的精确率、召回率和F1分数别提升了1.47、1.29和1.42个百分点,优于传统分类模型。