在线社交网络用户的人格与其行为模式、需求偏好和心理健康密切相关.本文提出了一种融合多特征的在线社交网络用户人格预测方法.该方法构建了一个在线社交网络用户人格特征体系,通过提取数字信息中的文本特征、行为特征、语言特征和情...在线社交网络用户的人格与其行为模式、需求偏好和心理健康密切相关.本文提出了一种融合多特征的在线社交网络用户人格预测方法.该方法构建了一个在线社交网络用户人格特征体系,通过提取数字信息中的文本特征、行为特征、语言特征和情感特征,采用早期特征融合策略,使用微博平台数据,对用户的Myers-Briggs Type Indicator(MBTI)人格类型进行预测.实验证明,本文提出的融合多特征的方法相较于简单基于文本特征的方法在分类的效果上更为出色,准确率和F1值分别提升了2.44%、2.59%.同时也表明,CNN在融合多特征的在线社交网络用户人格预测任务上展现出卓越的性能,而BERT结合BiLSTM在人格的信息收集方式和决策方式维度上表现出明显优势.展开更多
针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,...针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,将局部特征和全局特征融合,得到混合特征的特征矩阵。通过深度学习实现对应矩阵求解中相关参数的自动优化,最后利用加权奇异值分解(singular value decomposition,SVD)得到变换矩阵,完成配准。在ModelNet40数据集上的实验表明,和最远点采样相比,所提算法耗时减少45.36%;而配准结果和基于特征学习的鲁棒点匹配(robust point matching using learned features,RPM-Net)相比,平移矩阵均方误差降低5.67%,旋转矩阵均方误差降低13.1%。在自制点云数据上的实验,证实了算法在真实物体上配准的有效性。展开更多
文摘在线社交网络用户的人格与其行为模式、需求偏好和心理健康密切相关.本文提出了一种融合多特征的在线社交网络用户人格预测方法.该方法构建了一个在线社交网络用户人格特征体系,通过提取数字信息中的文本特征、行为特征、语言特征和情感特征,采用早期特征融合策略,使用微博平台数据,对用户的Myers-Briggs Type Indicator(MBTI)人格类型进行预测.实验证明,本文提出的融合多特征的方法相较于简单基于文本特征的方法在分类的效果上更为出色,准确率和F1值分别提升了2.44%、2.59%.同时也表明,CNN在融合多特征的在线社交网络用户人格预测任务上展现出卓越的性能,而BERT结合BiLSTM在人格的信息收集方式和决策方式维度上表现出明显优势.
文摘针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,将局部特征和全局特征融合,得到混合特征的特征矩阵。通过深度学习实现对应矩阵求解中相关参数的自动优化,最后利用加权奇异值分解(singular value decomposition,SVD)得到变换矩阵,完成配准。在ModelNet40数据集上的实验表明,和最远点采样相比,所提算法耗时减少45.36%;而配准结果和基于特征学习的鲁棒点匹配(robust point matching using learned features,RPM-Net)相比,平移矩阵均方误差降低5.67%,旋转矩阵均方误差降低13.1%。在自制点云数据上的实验,证实了算法在真实物体上配准的有效性。