期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
深度融合特征提取网络及其在化工过程软测量中的应用 被引量:7
1
作者 周乐 沈程凯 +2 位作者 吴超 侯北平 宋执环 《化工学报》 EI CAS CSCD 北大核心 2022年第7期3156-3165,共10页
复杂化工过程的观测数据往往同时包含非线性和强动态特性,而传统的化工过程软测量方法无法准确提取观测数据的非线性动态特征,以至影响数据建模和质量预报的准确性。提出了一种基于变分自编码器的深度融合特征提取网络(deep fusion feat... 复杂化工过程的观测数据往往同时包含非线性和强动态特性,而传统的化工过程软测量方法无法准确提取观测数据的非线性动态特征,以至影响数据建模和质量预报的准确性。提出了一种基于变分自编码器的深度融合特征提取网络(deep fusion features extraction network, DFFEN)。在变分自编码器框架下,通过构建潜隐特征信息传递通道,提取非线性动态潜隐变量。并利用自注意力机制(self-attention)融合关键的隐层信息,优化因信息传递通道过长而导致的潜在特征被遗忘的问题。此外,在后端网络构建潜隐变量和关键质量变量之间的回归模型,以实现关键质量变量的预报。最后,通过数值案例和实际的合成氨过程验证了所提出的DFFEN模型的可行性和有效性。 展开更多
关键词 过程控制 非线性动态建模 神经网络 深度融合特征 合成气
在线阅读 下载PDF
虹膜与眼周深度特征融合网络模型 被引量:3
2
作者 雷松泽 李永刚 +1 位作者 单奥奎 张文娟 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期240-248,共9页
虹膜识别的识别率虽然很高,但单模态识别时受环境、欺骗攻击等影响,并且在远距离或移动端、较少约束等场景下,识别率会大大下降。利用位置与虹膜相近并且被研究证明鉴别性很强的眼周生物特征,将虹膜和眼周进行双模态融合识别是较好的思... 虹膜识别的识别率虽然很高,但单模态识别时受环境、欺骗攻击等影响,并且在远距离或移动端、较少约束等场景下,识别率会大大下降。利用位置与虹膜相近并且被研究证明鉴别性很强的眼周生物特征,将虹膜和眼周进行双模态融合识别是较好的思路。为实现精确自适应的融合识别,本文提出新颖的虹膜与眼周深度特征融合网络模型(MultipleFusionNet)。根据特征通道注意力和通道分组注意力的思想,设计自动权值生成网络,通过网络学习自动获得虹膜与眼周的权值。权值与卷积神经网络(CNN)生成的虹膜与眼周深度特征加权计算,可实现两个模态的深度特征动态精确融合,从而提高识别准确率。本文网络模型中融合部分可作为通用的深度特征融合模块使用,该模块可灵活地嵌入在任何CNN主干网络中,轻便且易于实现。在中国科学院公开的远距离虹膜库图像库CASIA-Iris-Distance和近距离光照变化虹膜图像库CASIA-Iris-Lamp上进行了实验验证,多种方法的对比实验和距离度量实验结果显示:本文的特征融合模型准确率最高为99.56%,采用余弦距离度量的等误率(EER)最低为0.002 7,优于单模态方法和相关的特征融合方法;计算复杂度方面,参数量和计算量比单模型的两倍少1.5%,计算量只比基准融合方法高1%,这表明该融合模型计算复杂度低,具有良好的性能。 展开更多
关键词 双模态融合 虹膜识别 眼周识别 深度特征融合
在线阅读 下载PDF
基于多维神经网络深度特征融合的鸟鸣识别算法 被引量:2
3
作者 吉训生 江昆 谢捷 《信号处理》 CSCD 北大核心 2022年第4期844-853,共10页
为了进一步提高夜间迁徙鸟鸣监测的准确率,提出一种基于多维神经网络深度特征融合的鸟鸣识别算法。首先,提取鸟鸣对数尺度的梅尔谱图作为VGG Style模型的训练特征,增强时频谱图的能量分布,通过Mix up数据混合生成虚拟数据以减少模型的... 为了进一步提高夜间迁徙鸟鸣监测的准确率,提出一种基于多维神经网络深度特征融合的鸟鸣识别算法。首先,提取鸟鸣对数尺度的梅尔谱图作为VGG Style模型的训练特征,增强时频谱图的能量分布,通过Mix up数据混合生成虚拟数据以减少模型的过拟合。之后,将预训练的VGG Style作为特征提取器对每一段鸟鸣提取深度特征。鉴于不同维度模型的互补性,该文提出分别使用1维CNN-LSTM、2维VGG Style与3维DenseNet121模型作为特征提取器生成高级特征。对于1维CNN-LSTM,使用小波分解作为池化方法,分别对鸟鸣时、频域进行9层小波分解,生成多层LBP特征以获取更丰富的时频信息。最后,对CNN-LSTM与DenseNet121的全连接层进行优化,减少模型参数,提高实时性。实验结果表明,通过融合多维神经网络的深度特征,使用浅层分类器在含有43种鸟类的CLO-43SD数据集中,获得了93.89%的平衡准确率,相较于最新的Mel-VGG与Subnet-CNN融合模型,平衡准确率提高了7.58%。 展开更多
关键词 鸟鸣识别 1维CNN-LSTM 2维VGG Style 3维DenseNet121 深度特征融合
在线阅读 下载PDF
变转速工况下基于多传感器信号深度特征融合的电机故障诊断研究 被引量:27
4
作者 王骁贤 陆思良 +1 位作者 何清波 张世武 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第3期59-67,共9页
本文提出一种利用多传感器信号深度特征融合的方法实现电机变转速工况下的故障诊断。首先从多传感器节点同步采集电机的多通道振动、声音和漏磁信号。对漏磁信号进行处理获取电机转子的累积转角曲线,随后利用累积转角曲线对振动和声音... 本文提出一种利用多传感器信号深度特征融合的方法实现电机变转速工况下的故障诊断。首先从多传感器节点同步采集电机的多通道振动、声音和漏磁信号。对漏磁信号进行处理获取电机转子的累积转角曲线,随后利用累积转角曲线对振动和声音信号进行阶比分析处理。最后利用双层双向长短期记忆网络从经过预处理的多传感器信号中提取和融合特征以诊断电机故障。实验结果表明,通过提取和融合8通道的电机振动和声音信号,本文提出的方法能够有效识别电机的高阻接触、偏心、霍尔断线、相间短路、轴承等10类运行状态,分类准确率达到99.86%。该方法有望部署在物联网边缘计算节点中,实现电机的远程在线状态监测和故障诊断。 展开更多
关键词 电机故障诊断 多传感器信号 深度特征融合 双层双向长短期记忆网络 阶比分析
在线阅读 下载PDF
基于RGB特征与深度特征融合的物体识别算法 被引量:15
5
作者 卢良锋 谢志军 叶宏武 《计算机工程》 CAS CSCD 北大核心 2016年第5期186-193,共8页
RGB图像和深度图像的同时使用能有效提高物体识别的准确率。然而,已有研究仅将RGB图像和深度图像的特征进行简单的线性连接,没有根据RGB特征和深度特征的差异性进行特征提取和融合,充分发挥RGB-D图像的优势。为此,提出一种多模态稀疏自... RGB图像和深度图像的同时使用能有效提高物体识别的准确率。然而,已有研究仅将RGB图像和深度图像的特征进行简单的线性连接,没有根据RGB特征和深度特征的差异性进行特征提取和融合,充分发挥RGB-D图像的优势。为此,提出一种多模态稀疏自编码算法,在进行差异性特征提取的同时完成RGB特征和深度特征的有效融合。结合多模态稀疏自编码算法和空间金字塔最大池化算法,给出一个全新的深度学习模型。该模型能够提取有辨别力的特征并完成基于RGB-D图像的物体识别工作。在2个标准的RGB-D数据库上的实验结果表明,与基于RGB-D的物体识别算法相比,该算法能够有效融合RGB特征和深度特征,取得更高的识别准确率。 展开更多
关键词 RGB特征深度特征融合 稀疏自编码 多模态稀疏自编码 空间金字塔最大池化 深度学习 物体识别
在线阅读 下载PDF
基于融合深度特征的含分布式电源配电网智能故障检测 被引量:13
6
作者 安天瑜 马煜 +2 位作者 高阳 杨博文 魏家和 《中国测试》 CAS 北大核心 2023年第2期58-65,共8页
为解决含分布式电源配电网发生故障时无法快速准确获取故障类型、故障相序和故障位置的问题,该文基于深度学习理论和小波变换的思想,提出一种基于融合深度特征的含分布式电源配电网智能故障检测新方法,达到对含分布式电源配电网故障实... 为解决含分布式电源配电网发生故障时无法快速准确获取故障类型、故障相序和故障位置的问题,该文基于深度学习理论和小波变换的思想,提出一种基于融合深度特征的含分布式电源配电网智能故障检测新方法,达到对含分布式电源配电网故障实时识别并准确定位的效果。算法仿真验证结果表明,该方法在故障类型和故障相序识别的准确度方面有一定提高,且对故障位置定位的误差显著降低。 展开更多
关键词 故障检测 故障定位 融合深度特征 小波变换 深度神经网络
在线阅读 下载PDF
基于深度特征融合网络的风电机组行星齿轮箱故障诊断方法 被引量:19
7
作者 李东东 赵阳 +1 位作者 赵耀 蒋海涛 《电力系统保护与控制》 EI CSCD 北大核心 2022年第10期1-10,共10页
行星齿轮箱是风电机组中的重要部件,对风电机组的安全可靠运行具有重要意义。为此,提出一种基于深度特征融合网络的行星齿轮箱故障诊断方法,用于实现变速工况、样本不足和强噪声场景下的故障诊断。首先将原始信号扩展到多个特征域。其... 行星齿轮箱是风电机组中的重要部件,对风电机组的安全可靠运行具有重要意义。为此,提出一种基于深度特征融合网络的行星齿轮箱故障诊断方法,用于实现变速工况、样本不足和强噪声场景下的故障诊断。首先将原始信号扩展到多个特征域。其次利用多维堆栈稀疏自编码器提取各域特征。最后针对传统Softmax分类器对融合信息分类能力不足的问题,提出基于竞争粒子群算法优化的回声状态网络进行特征融合并输出诊断结果。经多场景不同故障诊断方法对比实验,所提方法在行星齿轮箱变速工况下分类效果良好,并对训练样本的减少和外界噪声有很强的鲁棒性。 展开更多
关键词 行星齿轮箱 故障诊断 多场景 深度学习 堆栈稀疏自编码器 回声状态网络 深度特征融合网络
在线阅读 下载PDF
基于图像和文本哈希特征学习的跨模态枸杞害虫检索
8
作者 庾骏 李祖贺 +2 位作者 郝林娜 田二林 舒振球 《农业工程学报》 北大核心 2025年第16期202-210,共9页
针对现有害虫智能识别方法仅能鉴别害虫类型而无法获取其详细生物特性的局限,该研究提出一种跨模态枸杞害虫检索模型(cross-modal wolfberry pest retrieval, CWPR),旨在实现害虫图像与其对应文本描述的精准匹配。模型通过一种两层级特... 针对现有害虫智能识别方法仅能鉴别害虫类型而无法获取其详细生物特性的局限,该研究提出一种跨模态枸杞害虫检索模型(cross-modal wolfberry pest retrieval, CWPR),旨在实现害虫图像与其对应文本描述的精准匹配。模型通过一种两层级特征融合方法,深度融合视觉Transformer特征和文本双向编码特征;同时引入标签增强技术,融入物种分布信息以学习强化的标签矩阵,有效缓解害虫数据种类不平衡问题。相较于单层融合方案,两层级特征融合使检索性能提升了1.21个百分点;标签增强技术的引入进一步使性能平均提升0.8个百分点。与现有较先进的跨模态检索方法相比,CWPR在两种跨模态枸杞害虫检索任务中平均性能高出1.89个百分点。该模型具备较高的跨模态检索精确度,可为枸杞害虫相关情报信息的有效获取提供有力技术支撑。 展开更多
关键词 枸杞害虫 跨模态信息检索 哈希学习 深度特征融合 标签增强
在线阅读 下载PDF
基于融合多网络深层卷积特征和稀疏双关系正则化方法的乳腺癌图像分类研究 被引量:6
9
作者 王永军 黄芳琳 +3 位作者 黄珊 姜峰 雷柏英 汪天富 《中国生物医学工程学报》 CAS CSCD 北大核心 2020年第5期532-540,共9页
乳腺癌是全球女性癌症死亡的主要原因之一。现有诊断方法主要是医生通过乳腺癌观察组织病理学图像进行判断,不仅费时费力,而且依赖医生的专业知识和经验,使得诊断效率无法令人满意。针对以上问题,设计基于组织学图像的深度学习框架,以... 乳腺癌是全球女性癌症死亡的主要原因之一。现有诊断方法主要是医生通过乳腺癌观察组织病理学图像进行判断,不仅费时费力,而且依赖医生的专业知识和经验,使得诊断效率无法令人满意。针对以上问题,设计基于组织学图像的深度学习框架,以提高乳腺癌诊断准确性,同时减少医生的工作量。开发一个基于多网络特征融合和稀疏双关系正则化学习的分类模型:首先,通过子图像裁剪和颜色增强进行乳腺癌图像预处理;其次,使用深度学习模型中典型的3种深度卷积神经网络(Inception V3、Res Net-50和VGG-16),提取乳腺癌病理图像的多网络深层卷积特征并进行特征融合;最后,通过利用两种关系("样本-样本"和"特征-特征"关系)和lF正则化,提出一种有监督的双关系正则化学习方法进行特征降维,并使用支持向量机将乳腺癌病理图像区分为4类—正常、良性、原位癌和浸润性癌。实验中,通过使用ICIAR 2018公共数据集中的400张乳腺癌病理图像进行验证,获得93%的分类准确性。融合多网络深层卷积特征可以有效地捕捉丰富的图像信息,而稀疏双关系正则化学习可以有效降低特征冗余并减少噪声干扰,有效地提高模型的分类性能。 展开更多
关键词 乳腺癌病理图像分类 深度卷积特征融合 有监督特征选择 支持向量机
在线阅读 下载PDF
声学和电流特征融合的行星齿轮箱诊断方法 被引量:4
10
作者 张娜 段礼祥 +1 位作者 李肇阳 樊晓萱 《石油机械》 北大核心 2023年第9期76-86,共11页
行星齿轮箱作为页岩气压裂机组、海上风电机组等油气行业大型装备的关键部件,因工作中表面温度过高,或不允许改造(如打磨、钻孔)等限制了接触传感器(如振动传感器)的安装。为此,设计了行星齿轮箱声学和电机电流信号的非接触传感器采集方... 行星齿轮箱作为页岩气压裂机组、海上风电机组等油气行业大型装备的关键部件,因工作中表面温度过高,或不允许改造(如打磨、钻孔)等限制了接触传感器(如振动传感器)的安装。为此,设计了行星齿轮箱声学和电机电流信号的非接触传感器采集方法;针对信号特征提取困难、特征不完备,以及诊断网络参数量大、计算效率低的问题,设计了新颖的轻量化多尺度解耦卷积网络方法,实现了行星齿轮箱声学和电机电流信号特征的深度融合。采用多尺度解耦卷积网络,提取声学信号和电机电流信号中对微弱故障及类间差异敏感的特征;进行标准卷积、串行并行计算以实现特征融合,使得特征相互补充,增强完备性;引入金字塔池化模块减少特征丢失。在行星轮断齿、缺齿和行星轮轴承保持架裂纹等典型故障模拟试验中,采集了声学信号和电机电流信号,对本方法进行验证,诊断准确率达99.73%。对比结果表明:轻量化多尺度解耦卷积网络融合诊断的效果优于标准卷积网络和同类结构网络;同时结合声学和电机电流信号的方法相比传统的接触传感器,以及单一非接触传感器有更高的诊断准确率和更强的抗噪性。研究结果可为行星齿轮箱的故障诊断提供参考。 展开更多
关键词 压裂机组 行星齿轮箱 故障诊断 非接触传感器 深度特征融合 解耦卷积
在线阅读 下载PDF
自适配权重特征融合的持续身份认证 被引量:1
11
作者 陶鹏 邓绍江 《重庆大学学报》 CAS CSCD 北大核心 2023年第1期103-112,共10页
针对现有智能手机用户身份认证方法的不足,提出了一种自适配权重特征融合的持续身份认证方法。设计了一种卷积神经网络,对手机内置传感器(加速度计、陀螺仪、磁力计)获取的用户行为信息数据进行深度特征提取及融合。通过网络中3个子网... 针对现有智能手机用户身份认证方法的不足,提出了一种自适配权重特征融合的持续身份认证方法。设计了一种卷积神经网络,对手机内置传感器(加速度计、陀螺仪、磁力计)获取的用户行为信息数据进行深度特征提取及融合。通过网络中3个子网络流分别提取3种传感器特征,在特征融合层加权融合,各特征的权值会在网络学习过程中根据不同特征的贡献度实现自适应分配。融合特征经过特征选择之后,使用单分类支持向量机进行用户分类认证。实验结果表明:该方法对不同用户身份认证获得的等错误率为1.20%,与现有其他认证方法相比具有更好的认证准确性。 展开更多
关键词 持续身份认证 自适配权重 深度特征融合 卷积神经网络 单分类支持向量机
在线阅读 下载PDF
RGB-D目标跟踪综述 被引量:2
12
作者 欧洲 应舸 +1 位作者 张大伟 郑忠龙 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第11期1673-1690,共18页
近年来,随着深度学习的不断发展,已有许多基于深度学习的RGB目标跟踪算法被提出且取得较为显著的性能提升,但纯粹依靠可见光进行跟踪的算法在光照变化、背景干扰、严重遮挡等复杂场景下仍难以实现鲁棒跟踪.为应对高难度场景下的挑战,实... 近年来,随着深度学习的不断发展,已有许多基于深度学习的RGB目标跟踪算法被提出且取得较为显著的性能提升,但纯粹依靠可见光进行跟踪的算法在光照变化、背景干扰、严重遮挡等复杂场景下仍难以实现鲁棒跟踪.为应对高难度场景下的挑战,实现高效鲁棒的目标跟踪,多模态目标跟踪应运而生.以RGB-D目标跟踪算法为主,详细列举了当前可见光-深度的多模态目标跟踪算法,对各类算法的优缺点进行分析和比较;并介绍了主流的RGB-D目标跟踪数据集,挑战赛及其评价指标;最后总结了RGB-D目标跟踪技术的发展趋势和挑战,并展望其未来的发展方向:特殊场景RGB-D数据集建设、全新RGB-D目标跟踪评估范式和有效模态融合的RGB-D模型范式. 展开更多
关键词 目标跟踪 多模态 可见光-深度特征融合
在线阅读 下载PDF
基于自动驾驶场景的目标检测算法DFSSD 被引量:7
13
作者 叶召元 郑建立 《计算机工程与应用》 CSCD 北大核心 2020年第16期139-147,共9页
为了提高单阶段目标检测算法对小目标和重叠目标的检测性能,使其能够应用到自动驾驶场景中,提出一种基于SSD(Single Shot Multibox Detector)的深度特征融合算法DFSSD(Deep Fusion based Single Shot Multibox Detector)。DFSSD主要从... 为了提高单阶段目标检测算法对小目标和重叠目标的检测性能,使其能够应用到自动驾驶场景中,提出一种基于SSD(Single Shot Multibox Detector)的深度特征融合算法DFSSD(Deep Fusion based Single Shot Multibox Detector)。DFSSD主要从两个角度对SSD算法进行改进:一方面提出一种高效的特征融合方式,在不引入大量参数和过多计算量的情况下,增强了模型的特征表达能力和对困难小目标的检测能力;另一方面引入一种带噪声的训练方式,即在训练时,随机地将样本中未标记的困难正例目标(不易分辨的正例目标)加入训练,以提高算法对复杂背景的抗干扰能力,降低对困难小目标的误检率。在PASCAL VOC2007测试集上,DFSSD300比SSD300的mAP(mean Average Precision)提升了3.7个百分点,在KITTI数据集上,Car类困难目标的AP(Average Precision)值提升了5个百分点,同时与SSD300具有相当的检测速率。 展开更多
关键词 深度特征融合 小目标检测 深度学习 自动驾驶场景
在线阅读 下载PDF
基于MDFF与ISSA的滚动轴承故障声发射诊断 被引量:2
14
作者 魏巍 王之海 +2 位作者 柳小勤 冯正江 李佳慧 《振动与冲击》 EI CSCD 北大核心 2023年第7期65-76,共12页
针对滚动轴承早期、复合故障难以准确诊断与智能诊断模型超参数确定严重依赖专家先验知识问题,提出一种基于多维深度特征融合(multi-dimensional depth feature fusion, MDFF)与改进麻雀搜索算法(improved sparrow search algorithm, IS... 针对滚动轴承早期、复合故障难以准确诊断与智能诊断模型超参数确定严重依赖专家先验知识问题,提出一种基于多维深度特征融合(multi-dimensional depth feature fusion, MDFF)与改进麻雀搜索算法(improved sparrow search algorithm, ISSA)的滚动轴承故障声发射诊断方法。用一维卷积与线性瓶颈反向残差二维卷积神经网络构建多输入卷积神经网络(convolution neural network, CNN)结构的诊断模型,模型输入为滚动轴承声发射信号及其小波时频图,提出基于布伦纳梯度和信噪比的质量指标,在108种小波基中筛选出最佳时频图以提升输入数据质量。接着,采用特征金字塔网络将模型的一、二维低层与高层特征融合,建立深度融合的诊断模型。然后,将交叉混沌映射、自适应权重及融合的随机游走策略引入麻雀搜索算法中,以自适应获取MDFFCNN最优超参数。试验表明,对比近期多个主流智能诊断算法,所提方法可避免人工选择诊断模型超参数,对滚动轴承早期尤其复合故障具有更高的诊断精度和稳定性,模型诊断过程的智能化水平得到了进一步提高。 展开更多
关键词 滚动轴承 声发射(AE) 深度学习 改进麻雀搜索(ISSA) 卷积神经网络(CNN) 多维深度特征融合(MDFF) 最佳时频图
在线阅读 下载PDF
结合改进混合卷积模型的遥感影像变化检测 被引量:2
15
作者 代云锋 刘丽娜 《遥感信息》 CSCD 北大核心 2022年第6期53-59,共7页
针对基于深度学习的变化检测模型搭建中提高变化检测精度这一难点,在综合考虑面向像元和面向对象变化检测算法的基础上,设计了一种基于改进混合卷积特征提取模块的变化检测模型。该模型结合多切片思想和并行神经网络结构,融合不同尺寸... 针对基于深度学习的变化检测模型搭建中提高变化检测精度这一难点,在综合考虑面向像元和面向对象变化检测算法的基础上,设计了一种基于改进混合卷积特征提取模块的变化检测模型。该模型结合多切片思想和并行神经网络结构,融合不同尺寸的卷积核获取丰富的多尺度特征。首先,利用超像素分割算法将测试影像分割成无重叠的同质性区域;然后,选取一定数量的样本对模型进行训练,得到测试影像的像素级变化检测结果;最后,利用投票法,将网络得到的像素级结果与分割对象相结合,得到最终的变化检测结果。实验结果表明,基于该方法的网络模型性能较好,该模型可以有效学习多时相影像中的空间信息及差异特征,同时结合分割算法能够降低虚检率和漏检率,有效提高了变化检测精度。 展开更多
关键词 改进混合卷积 特征提取 多切片 深度特征融合 变化检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部