期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多模态深度融合模型的广告点击率预估 被引量:2
1
作者 宋永强 王红 王露潼 《小型微型计算机系统》 CSCD 北大核心 2019年第12期2538-2544,共7页
互联网广告效果的研究是网络营销的研究重点,无论是品牌广告或效果广告,合适的互联网广告设计效果将直接影响网络营销商的利益与用户的体验.现阶段,广告运营商的投放策略、广告创意优化、定向人群、媒体选择都以点击率为重要条件,精准... 互联网广告效果的研究是网络营销的研究重点,无论是品牌广告或效果广告,合适的互联网广告设计效果将直接影响网络营销商的利益与用户的体验.现阶段,广告运营商的投放策略、广告创意优化、定向人群、媒体选择都以点击率为重要条件,精准的点击率预估可以精细化权衡和保障用户、广告、平台三方利益.为了更加准确的预估点击率本文定向研究用户行为方式,选择马尔科夫链模型处理用户行为信息,利用频繁序列挖掘用户行为特点消除用户间无差异性假设,基于在线学习方法融合特征构建深度神经网络,获得特征的高阶非线性表达,建立多模态深度融合(Multimodal Depth Integration MDI)模型用于点击率预估.实验结果表明,提出的多模态深度融合模型的表示能力和鲁棒性都优于各基线模型,取得不错的预测效果. 展开更多
关键词 马尔科夫链 无差别假设 深度神经网络 多模态深度融合模型
在线阅读 下载PDF
统计机器翻译中大规模特征的深度融合 被引量:4
2
作者 刘宇鹏 乔秀明 +1 位作者 赵石磊 马春光 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第1期46-56,共11页
对循环神经网络和递归神经网络进行改进,提出深度融合的神经网络(DNN)模型,在训练过程中加入大规模特征.该模型有很强的泛化能力,适合于现在主流的自底向上解码样式,融合了2种经典的机器翻译模型:基于短语的层次化文法(HPG)和括号转录文... 对循环神经网络和递归神经网络进行改进,提出深度融合的神经网络(DNN)模型,在训练过程中加入大规模特征.该模型有很强的泛化能力,适合于现在主流的自底向上解码样式,融合了2种经典的机器翻译模型:基于短语的层次化文法(HPG)和括号转录文法(BTG).使用改进的循环神经网络,生成适合短语生成过程的短语/规则对语义向量,并在生成过程中使用了自编码器以提高循环神经网络的性能.使用改进的递归神经网络,使它在翻译过程中指导解码,考虑到另一个解码器在解码过程中的信息,互相影响共同提高翻译性能.提出的深度融合模型不仅适合于异类翻译系统,也适合于异类语料.相对于经典的基线系统,在异类系统上该模型的实验结果获得1.0~1.9倍的BLEU分数提高,在异类语料上该模型的实验结果获得1.05~1.58的BLEU分数提高,且进行了统计显著性检验. 展开更多
关键词 大规模特征 异类语料 异类系统 深度融合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部