社区结构是复杂网络的重要特征之一,社区发现对研究网络结构有重要的应用价值.k-均值等经典聚类算法是解决社区发现问题的一类基本方法.然而,在处理网络的高维矩阵时,使用这些经典聚类方法得到的社区往往不够准确.提出一种基于深度稀疏...社区结构是复杂网络的重要特征之一,社区发现对研究网络结构有重要的应用价值.k-均值等经典聚类算法是解决社区发现问题的一类基本方法.然而,在处理网络的高维矩阵时,使用这些经典聚类方法得到的社区往往不够准确.提出一种基于深度稀疏自动编码器的社区发现算法CoDDA(a community detection algorithm based on deep sparse autoencoder),尝试提高使用这些经典方法处理高维邻接矩阵进行社区发现的准确性.首先,提出基于跳数的处理方法,对稀疏的邻接矩阵进行优化处理,得到的相似度矩阵不仅能够反映网络拓扑结构中相连节点间的相似关系,同时还反映了不相连节点间的相似关系.然后,基于无监督深度学习方法构建深度稀疏自动编码器,对相似度矩阵进行特征提取,得到低维的特征矩阵.与邻接矩阵相比,特征矩阵对网络拓扑结构有更强的特征表达能力.最后,使用k-均值算法对低维特征矩阵聚类得到社区结构.实验结果显示:与6种典型的社区发现算法相比,CoDDA算法能够发现更准确的社区结构.同时,参数实验结果显示,CoDDA算法发现的社区结构比直接使用高维邻接矩阵的基本k-均值算法发现的社区结构更为准确.展开更多
在3D CT影像分析上应用深度学习技术时,通常需要采用交互标注工具标注一组训练数据.针对3D CT影像一般包含数量较多的切片,医学影像交互标注工作量非常巨大且标注成本非常高的问题,提出一种面向3DCT影像数据交互标注的无监督推荐标注算...在3D CT影像分析上应用深度学习技术时,通常需要采用交互标注工具标注一组训练数据.针对3D CT影像一般包含数量较多的切片,医学影像交互标注工作量非常巨大且标注成本非常高的问题,提出一种面向3DCT影像数据交互标注的无监督推荐标注算法,通过构造稠密深度自动编码器DCDAE (densely-connected deep auto encoder)提取3D影像的高层特征,同时采用密度-谱聚类来筛选最具标注价值的影像,从而极大减少需要标注的数据量.算法提出了全自动的推荐标注流程,在提取图像特征时采用稠密连接结构改进DCDAE,减少了参数量并使得提取的特征更有区分度,同时对特征采用密度-谱聚类算法进行孤立点鉴别,并依据相关性矩阵自适应调整聚类个数;在肺结节语义分割任务上采用LIDC-IDRI数据集对算法进行了实验.展开更多
文摘社区结构是复杂网络的重要特征之一,社区发现对研究网络结构有重要的应用价值.k-均值等经典聚类算法是解决社区发现问题的一类基本方法.然而,在处理网络的高维矩阵时,使用这些经典聚类方法得到的社区往往不够准确.提出一种基于深度稀疏自动编码器的社区发现算法CoDDA(a community detection algorithm based on deep sparse autoencoder),尝试提高使用这些经典方法处理高维邻接矩阵进行社区发现的准确性.首先,提出基于跳数的处理方法,对稀疏的邻接矩阵进行优化处理,得到的相似度矩阵不仅能够反映网络拓扑结构中相连节点间的相似关系,同时还反映了不相连节点间的相似关系.然后,基于无监督深度学习方法构建深度稀疏自动编码器,对相似度矩阵进行特征提取,得到低维的特征矩阵.与邻接矩阵相比,特征矩阵对网络拓扑结构有更强的特征表达能力.最后,使用k-均值算法对低维特征矩阵聚类得到社区结构.实验结果显示:与6种典型的社区发现算法相比,CoDDA算法能够发现更准确的社区结构.同时,参数实验结果显示,CoDDA算法发现的社区结构比直接使用高维邻接矩阵的基本k-均值算法发现的社区结构更为准确.
文摘在3D CT影像分析上应用深度学习技术时,通常需要采用交互标注工具标注一组训练数据.针对3D CT影像一般包含数量较多的切片,医学影像交互标注工作量非常巨大且标注成本非常高的问题,提出一种面向3DCT影像数据交互标注的无监督推荐标注算法,通过构造稠密深度自动编码器DCDAE (densely-connected deep auto encoder)提取3D影像的高层特征,同时采用密度-谱聚类来筛选最具标注价值的影像,从而极大减少需要标注的数据量.算法提出了全自动的推荐标注流程,在提取图像特征时采用稠密连接结构改进DCDAE,减少了参数量并使得提取的特征更有区分度,同时对特征采用密度-谱聚类算法进行孤立点鉴别,并依据相关性矩阵自适应调整聚类个数;在肺结节语义分割任务上采用LIDC-IDRI数据集对算法进行了实验.