期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
基于变分自编码器的临近降水预报技术研究
1
作者 胡明明 尹君逸 +3 位作者 郭森 司晓云 陶文彬 郭景涛 《人民黄河》 北大核心 2025年第8期27-31,38,共6页
为了解决当前临近降水预报模型无法学习雷达回波图像在空间和时间维度上的非线性特征变化问题,提出一种基于变分自编码器(VAE)的临近降水预报模型。1)通过构建变分自编码器在潜在空间上定义一个概率分布函数,进行雷达回波图像重构。2)... 为了解决当前临近降水预报模型无法学习雷达回波图像在空间和时间维度上的非线性特征变化问题,提出一种基于变分自编码器(VAE)的临近降水预报模型。1)通过构建变分自编码器在潜在空间上定义一个概率分布函数,进行雷达回波图像重构。2)引入自注意力机制学习雷达回波图像在空间和时间维度上的依赖关系。3)引入离散的潜在空间来捕捉雷达回波图像复杂的上下文语义信息。基于SEVIR数据集进行模型的性能评估实验,与Simvp和PhyDNet两个代表性的临近降水预报模型进行对比,通过设计消融实验评估本模型中每个模块的有效性。结果表明:本模型能够准确预测未来5帧的雷达回波图像,预测精度比Simvp和PhyDNet模型高,每个模块的引入都能够对临近降水预报模型的性能提升有所贡献。 展开更多
关键词 临近降水预报 深度学习 自编码器 自注意力机制
在线阅读 下载PDF
基于混合高斯先验变分自编码器的深度多球支持向量数据描述
2
作者 武慧囡 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2024年第6期135-143,共9页
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ... 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。 展开更多
关键词 深度支持向量数据描述 混合高斯先验 自编码器 异常检测 超球崩溃
在线阅读 下载PDF
基于矢量量化变分自编码器的混凝土表观裂缝检测算法 被引量:1
3
作者 刘超 吴纪曙 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第11期1699-1705,共7页
提出了一种基于第2代矢量量化变分自编码器(VQ-VAE-2)的自监督混凝土表观裂缝检测算法,可以在缺少裂缝样本的条件下实现高效检测。以重建误差为检测指标,利用无裂缝图片训练VQ-VAE-2,使其在重建裂缝图片时产生更大的重建误差;在计算重... 提出了一种基于第2代矢量量化变分自编码器(VQ-VAE-2)的自监督混凝土表观裂缝检测算法,可以在缺少裂缝样本的条件下实现高效检测。以重建误差为检测指标,利用无裂缝图片训练VQ-VAE-2,使其在重建裂缝图片时产生更大的重建误差;在计算重建误差时将原图和重建图片均分割成若干图块,取对应图块间重建误差最大值作为图片的重建误差,以增大2类图片的重建误差差异。结果表明,该算法的精确率为0.954,召回率为0.959,准确率为0.956,F1分数为0.957。在无裂缝样本作为训练集的情况下,该算法能较好地完成混凝土表观裂缝检测任务。 展开更多
关键词 桥梁工程 混凝土表观裂缝检测 深度学习 自编码器 异常检测
在线阅读 下载PDF
跳连接变分自编码器与CNN相结合的滚动轴承故障诊断方法 被引量:1
4
作者 张洪亮 余其源 王锐 《机械科学与技术》 CSCD 北大核心 2024年第4期681-689,共9页
针对滚动轴承故障率小、不易收集故障数据的问题,提出基于跳跃连接变分自编码器与宽核深度卷积神经网络相结合的小样本故障诊断方法。该方法首先在变分自编码器的编码和解码之间引入跳跃连接结构,并将Tanh作为网络的激活函数,进而提高... 针对滚动轴承故障率小、不易收集故障数据的问题,提出基于跳跃连接变分自编码器与宽核深度卷积神经网络相结合的小样本故障诊断方法。该方法首先在变分自编码器的编码和解码之间引入跳跃连接结构,并将Tanh作为网络的激活函数,进而提高生成样本的特征多样性;其次,构建宽核深度卷积网络诊断模型,该模型可以提高从振动信号中提取故障特征的能力;最后,经生成样本扩充的数据集作为模型输入,提高训练集包含的特征信息量,实现小样本下的故障诊断。实验分析表明,所提方法在小样本情形下能生成有效的伪样本并具有较高的诊断精度。 展开更多
关键词 故障诊断 跳跃连接自编码器 数据生成 宽核深度卷积神经网络
在线阅读 下载PDF
基于变分自编码器和差分隐私的轨迹数据发布方案
5
作者 王永军 王金帅 +2 位作者 王辉 申自浩 刘沛骞 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2261-2268,共8页
轨迹数据对各种应用都有很大研究价值,但其包含用户的敏感信息,直接发布真实的轨迹数据会对用户的隐私造成严重威胁.针对此问题,本文提出了一种结合变分自编码器和差分隐私的轨迹数据发布方案.首先,利用基于变分自编码器的轨迹生成模型... 轨迹数据对各种应用都有很大研究价值,但其包含用户的敏感信息,直接发布真实的轨迹数据会对用户的隐私造成严重威胁.针对此问题,本文提出了一种结合变分自编码器和差分隐私的轨迹数据发布方案.首先,利用基于变分自编码器的轨迹生成模型生成相似轨迹,将其代替真实轨迹提交给可信第三方;其次,使用K-means++算法对相似轨迹进行聚类,借助指数机制选取每个子簇的位置代表元;最后,连接位置代表元构造泛化轨迹,统计相似计数sc,利用判断机制,过滤异常数据,对sc添加Laplace噪声,得到噪声计数nc,并对nc添加一致性约束处理,保证nc的可用性.实验结果表明,本方案与现有的方案相比,其隐私保护强度提高了10%~40%,而且具有较高的数据可用性. 展开更多
关键词 轨迹数据 自编码器 轨迹数据发布 隐私 一致性约束
在线阅读 下载PDF
基于分布对齐变分自编码器的深度多视图聚类 被引量:10
6
作者 谢胜利 陈泓达 +2 位作者 高军礼 彭玺 尹明 《计算机学报》 EI CAS CSCD 北大核心 2023年第5期945-959,共15页
多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些... 多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些问题,本文提出了一种基于分布对齐变分自编码器的深度多视图聚类方法(Deep Multi-View Clustering based on Distribution Aligned Variational Autoencoder,DMVCDA).首先,针对特定视图我们利用多个变分自编码器从不同视图中提取潜在特征,并对特征的分布进行对齐,以挖掘包含基本信息的潜在特征;然后,引入视图权重参数,获取共享的潜在特征;最后,在潜在特征上建立面向聚类的损失目标,使得学习到的潜在特征更适合聚类任务,从而提高聚类精度.在五个公共多视图数据集上的实验结果表明,我们的模型在精确度(ACC)、标准互信息(NMI)和纯度(Purity)等多个聚类评价指标上均表现出优异的性能. 展开更多
关键词 多视图聚类 深度学习 自编码器 加权融合 对齐
在线阅读 下载PDF
不平衡样本下基于变分自编码器预处理深度学习和DGA的变压器故障诊断方法 被引量:31
7
作者 张弛 吴东 +2 位作者 王伟 刘力卿 谢军 《南方电网技术》 CSCD 北大核心 2021年第3期68-74,共7页
为提高变压器故障诊断效果,并改善训练样本数量不平衡对故障诊断的不利影响,提出了一种基于变分自编码预处理深度学习和油中溶解气体分析(dissolved gas-in-oil analysis,DGA)的变压器故障诊断方法。该方法以各样本DGA特征量为诊断模型... 为提高变压器故障诊断效果,并改善训练样本数量不平衡对故障诊断的不利影响,提出了一种基于变分自编码预处理深度学习和油中溶解气体分析(dissolved gas-in-oil analysis,DGA)的变压器故障诊断方法。该方法以各样本DGA特征量为诊断模型输入,以各故障状态概率分布为诊断模型输出。首先通过变分自编码器对少数类训练样本进行预处理,在学习确定少数类训练样本分布特征的基础上实现训练样本自动生成,进而提高训练样本的均衡性。基于3隐层结构堆栈稀疏自编码器深度学习网络构建变压器故障诊断模型,并以经变分自编码器预处理后的均衡训练样本对诊断模型参数进行更新优化。基于实例验证了所提方法的有效性。实验结果表明,所提方法可改善训练样本不平衡的不利影响,各训练集下,采用所提方法的变压器故障诊断结果准确率均保持在91%以上,且漏报率较低。 展开更多
关键词 压器 故障诊断 深度学习 自编码器 不平衡样本 油中溶解气体
在线阅读 下载PDF
基于融合变分图注意自编码器的深度聚类模型 被引量:8
8
作者 康雁 寇勇奇 +4 位作者 谢思宇 王飞 张兰 吴志伟 李浩 《计算机科学》 CSCD 北大核心 2021年第S02期81-87,116,共8页
聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息... 聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息进行融合以完成表征学习。提出一种融合变分图注意自编码器的深度聚类模型FVGTAEDC(Deep Clustering Model Based on Fusion Varitional Graph Attention Self-encoder),此模型通过联合自编码器和变分图注意自编码器进行聚类,模型中自编码器将变分图注意自编码器从网络中学习(低阶和高阶)结构表示进行集成,随后从原始数据中学习特征表示。在两个模块训练的同时,为了适应聚类任务,将自编码器模块融合节点和结构信息的表示特征进行自监督聚类训练。通过综合聚类损失、自编码器重构数据损失、变分图注意自编码器重构邻接矩阵损失、后验概率分布与先验概率分布相对熵损失,该模型可以有效聚合节点的属性和网络的结构,同时优化聚类标签分配和学习适合于聚类的表示特征。综合实验证明,该方法在5个现实数据集上的聚类效果均优于当前先进的深度聚类方法。 展开更多
关键词 深度聚类 表征学习 自编码器 图注意自编码器 自监督聚类
在线阅读 下载PDF
基于分布增强的深度变分文本聚类模型
9
作者 申奥 黄瑞章 +2 位作者 薛菁菁 陈艳平 秦永彬 《计算机应用》 北大核心 2025年第8期2457-2463,共7页
针对深度变分文本聚类模型在实际应用中遇到的分布信息缺失和分布坍塌问题,提出一种基于分布增强的深度变分文本聚类模型(DVCMD)。该模型通过分布信息增强的方法,整合增强潜在语义分布至原始潜在语义分布,从而提高潜在分布的信息完整性... 针对深度变分文本聚类模型在实际应用中遇到的分布信息缺失和分布坍塌问题,提出一种基于分布增强的深度变分文本聚类模型(DVCMD)。该模型通过分布信息增强的方法,整合增强潜在语义分布至原始潜在语义分布,从而提高潜在分布的信息完整性和准确性;同时,采用分布一致性约束策略促使模型学习一致的语义表征,从而提高模型通过学习的语义分布对数据真实信息的表达能力,进而提升聚类性能。实验结果表明,与现有的深度聚类模型和结构语义增强聚类模型相比,DVCMD的归一化互信息(NMI)指标在Abstract、BBC、Reuters-10k和BBCSports这4个真实数据集上分别至少提升了0.16、9.01、2.30和2.72个百分点,验证了模型的有效性。 展开更多
关键词 深度文本聚类 布增强 自编码器 语义表征 布一致性约束
在线阅读 下载PDF
风电和光伏随机场景生成的条件变分自动编码器方法 被引量:69
10
作者 王守相 陈海文 +1 位作者 李小平 舒欣 《电网技术》 EI CSCD 北大核心 2018年第6期1860-1867,共8页
随着风电、光伏等可再生能源渗透率的不断提高,其运行波动性及随机性对电网稳定运行、经济调度等方面带来不良影响,对可再生能源的不确定性进行建模愈加重要。随机场景分析法是解决该问题的主要方法之一,现有随机场景生成方法基于历史... 随着风电、光伏等可再生能源渗透率的不断提高,其运行波动性及随机性对电网稳定运行、经济调度等方面带来不良影响,对可再生能源的不确定性进行建模愈加重要。随机场景分析法是解决该问题的主要方法之一,现有随机场景生成方法基于历史数据对风电、光伏出力进行概率建模,进而进行抽样生成场景,模型准确性差、计算复杂度高。为简化随机场景生成步骤,提高生成效率及精度,提出了一种基于条件变分自动编码器(variational autoencoder,VAE)的风电光伏出力随机场景生成方法,较已有概率方法,所提方法可无监督地学习风电、光伏训练数据的时间、空间及波动性特点,并按条件高效地生成符合观测特点的数据,无需场景约简。通过在单一发电单元、多发电单元、指定标签场景3个场景的成功应用,验证了所提算法的有效性。 展开更多
关键词 随机场景 条件分自编码器 深度学习 场景生成
在线阅读 下载PDF
基于孪生变分自编码器的小样本图像分类方法 被引量:10
11
作者 王德文 魏波涛 《智能系统学报》 CSCD 北大核心 2021年第2期254-262,共9页
当前深度学习大都基于大量数据通过构建深层次的网络实现自动识别,但在很多场景中难以获得大量的样本数据。针对这一问题,提出一种基于孪生变分自编码器(siamese variational auto-encoder,S-VAE)的小样本图像分类方法。通过变分自编码... 当前深度学习大都基于大量数据通过构建深层次的网络实现自动识别,但在很多场景中难以获得大量的样本数据。针对这一问题,提出一种基于孪生变分自编码器(siamese variational auto-encoder,S-VAE)的小样本图像分类方法。通过变分自编码器提取原始训练数据的高层语义特征,然后由两个训练好的变分自编码器的编码器部分组建孪生网络的输入结构,最后通过分类器对样本进行识别。变分自编码器可以解决样本数据量少带来的过拟合问题,孪生网络的结构增加了样本数量较少的情况下的训练次数。在Omniglot数据集上进行的实验结果表明:本方法与原始孪生神经网络相比正确率平均提高了3.1%,模型收敛速度更快,证明了孪生变分自编码器能够较好地完成小样本数据分类任务。 展开更多
关键词 小样本 自编码器 孪生网络 图像识别 过拟合 特征向量 深度学习 数据增强
在线阅读 下载PDF
基于钉板分布稀疏变分自编码器的异常检测算法研究 被引量:5
12
作者 陈华华 陈哲 《电信科学》 2022年第12期65-77,共13页
异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散−连续混合模型钉板分布作为变分自编... 异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散−连续混合模型钉板分布作为变分自编码器的先验,模拟隐变量所在空间的稀疏性,得到数据特征的稀疏表示;其次,以所提出的自编码器构建深度支持向量网络,对特征空间进行压缩,并采用最优超球体区分正常数据和异常数据;再次,以数据特征和超球体中心之间的欧氏距离完成异常检测;最后,在基准数据集MNIST(modifiednational institute of standards and technology database)和Fashion-MNIST上的实验评估表明,与现存的异常检测算法相比,本文所提出的算法具有更好的检测效果。 展开更多
关键词 异常检测 自编码器 钉板 深度支持向量网络
在线阅读 下载PDF
基于双通道变分自编码器的高光谱图像分类
13
作者 刘遵雄 石亚鹏 +1 位作者 彭潇雨 王毅宏 《计算机工程与应用》 CSCD 北大核心 2022年第2期244-251,共8页
针对现有高光谱图像变分自编码器(variational autoencoder,VAE)分类算法存在空间和光谱特征利用效率低的问题,提出一种基于双通道变分自编码器的高光谱图像深度学习分类算法。通过构建一维条件变分自编码器(conditional variational au... 针对现有高光谱图像变分自编码器(variational autoencoder,VAE)分类算法存在空间和光谱特征利用效率低的问题,提出一种基于双通道变分自编码器的高光谱图像深度学习分类算法。通过构建一维条件变分自编码器(conditional variational autoencoder,CVAE)特征提取框架和二维循环通道条件变分自编码(channel-recurrent conditional variational autoencoders,CRCVAE)特征提取框架分别提取高光谱图像的光谱特征和空间特征,将光谱特征向量和空间特征向量叠加形成空谱联合特征向量,将联合特征送入Softmax分类器中进行分类。在Indian pines和Pavia University两种高光谱数据集上进行了分析验证,实验结果显示,与其他算法相比,提出的算法在总分类精度、平均分类精度和Kappa系数等评价指标上至少提高了3.40、2.75和3.57个百分点,结果显示提出的算法得到了最高的分类精度和更好的可视化效果。 展开更多
关键词 深度学习 高光谱图像 自编码器 空谱联合特征
在线阅读 下载PDF
基于变分自编码器的视频异常事件检测方法 被引量:6
14
作者 苏鹏 王常顺 卢萌萌 《电子测量与仪器学报》 CSCD 北大核心 2020年第10期179-185,共7页
异常事件检测由于其在视频监控场景中的重要性而引起了广泛的关注。但是由于缺乏异常标注样本,使得这个问题较难解决。提出了一种新的部分监督学习方法,仅采用正常样本训练检测模型以进行视频异常事件检测和定位。假设所有正常样本的分... 异常事件检测由于其在视频监控场景中的重要性而引起了广泛的关注。但是由于缺乏异常标注样本,使得这个问题较难解决。提出了一种新的部分监督学习方法,仅采用正常样本训练检测模型以进行视频异常事件检测和定位。假设所有正常样本的分布符合一个高斯分布,那么异常样本在这个高斯分布中将以较低的概率出现。该方法基于变分自编码器(VAE),通过端对端的深度学习技术,将正常样本的隐层表示约束成一个高斯分布。给定测试样本,通过变分自编码器获得其隐层表示,计算其隐层表示属于高斯分布的概率,并根据检测门限判断其是否异常。在两个公开的数据集(UCSD dataset和avenue dataset)上的实验结果表明,所提出的方法达到了92.3%的帧级AUC和82.1%的帧级AUC,以及571 fps的检测速度,在性能和效率上明显高于现有检测方法。 展开更多
关键词 视频监控 异常检测 深度学习 自编码器
在线阅读 下载PDF
基于变分自编码器的评分预测模型 被引量:2
15
作者 陈海 钱付兰 +2 位作者 陈洁 赵姝 张燕平 《计算机工程与应用》 CSCD 北大核心 2021年第22期153-159,共7页
深度学习模型具有鲁棒性差的局限性,常见的如在图片中增加特定的噪声会影响到图片的分类和预测结果。近期有学者将深度学习引入到推荐系统中,因此在推荐系统中也存在噪声对推荐精度影响的问题。针对深度推荐模型的鲁棒性问题,基于变分... 深度学习模型具有鲁棒性差的局限性,常见的如在图片中增加特定的噪声会影响到图片的分类和预测结果。近期有学者将深度学习引入到推荐系统中,因此在推荐系统中也存在噪声对推荐精度影响的问题。针对深度推荐模型的鲁棒性问题,基于变分自编码器(Variational Auto-Encoder,VAE)提出了新的评分预测模型REVAE(REcommender Variational Auto-Encoder)。该模型为了训练模型对噪声干扰的鲁棒性,在传统的VAE上增加了一层隐层表示,利用后验分布对隐层表示进行约束,并在该隐层上增加了噪声,通过重构输入数据,训练得到具有抗噪能力的推荐算法模型。在公开的Movielens数据集上进行的实验结果表明,REVAE可以有效降低噪声对模型的干扰,使得整个模型更具有健壮性,相比其他评分预测算法具有更好的推荐效果。 展开更多
关键词 深度学习 推荐系统 自编码器(VAE) 预测
在线阅读 下载PDF
基于变分自编码器的谣言立场分类算法 被引量:5
16
作者 郭奉琦 孟凡荣 王志晓 《计算机工程》 CAS CSCD 北大核心 2022年第2期99-105,共7页
针对当前谣言检测任务中社交媒体推特平台的推文数据分布复杂且不均衡的特点,提出基于变分自编码器(VAE)的谣言立场分类算法VAE-LSTM。对数据进行预处理后,利用word2vec模型提取推文词向量并输入VAE中进行训练,得到符合简单概率分布的... 针对当前谣言检测任务中社交媒体推特平台的推文数据分布复杂且不均衡的特点,提出基于变分自编码器(VAE)的谣言立场分类算法VAE-LSTM。对数据进行预处理后,利用word2vec模型提取推文词向量并输入VAE中进行训练,得到符合简单概率分布的深度特征序列再从中采样获取有效特征,以避免数据量较大的推文类别影响特征向量。在此基础上,使用长短时记忆(LSTM)网络处理向量序列数据进而实现分类。理论分析和实验结果表明,VAE-LSTM算法无须手动提取或添加特征,训练过程简单高效,同时能缓解类间不平衡问题,其应用于实际场景准确率和F1得分分别为0.800和0.494,与时序注意力机制算法、Turing算法、霍克斯过程算法等相比分类性能更好,且较SVM等早期机器学习方法节省了大量数据预处理时间。 展开更多
关键词 自编码器 长短时记忆网络 社交网络 谣言立场 深度特征
在线阅读 下载PDF
用于协同过滤的序列解耦变分自编码器 被引量:2
17
作者 伍美霖 黄佳进 秦进 《计算机科学》 CSCD 北大核心 2022年第12期163-169,共7页
推荐模型通常使用用户的历史行为来获得用户偏好表示,以产生推荐。大多数方法学习到的用户表示会把不同的偏好因素纠缠在一起,而解耦学习的方法可以用于分解用户的行为特征。为此,文中提出了一个基于变分自编码器的框架DSVAECF,用于从... 推荐模型通常使用用户的历史行为来获得用户偏好表示,以产生推荐。大多数方法学习到的用户表示会把不同的偏好因素纠缠在一起,而解耦学习的方法可以用于分解用户的行为特征。为此,文中提出了一个基于变分自编码器的框架DSVAECF,用于从用户历史行为中分解静态和动态偏好因素。首先,DSVAECF模型的两个编码器分别使用多层感知机和循环神经网络对用户行为进行历史行为建模,以此得到用户的静态和动态偏好表示;然后,将拼接的静态和动态偏好表示视为用户偏好的解耦表示,并将其输入解码器来捕获用户的决策,并重构出用户行为。在模型训练阶段,一方面最大化重构的用户行为与真实用户行为之间的互信息来学习模型参数;另一方面通过最小化解耦表示与其先验分布间的差异来保留模型的生成能力。在Amazon和MovieLens两个数据集上的实验结果表明,与基准方法相比,DSVAECF在归一化折损累计增益、精确率和召回率上都有显著的提升,拥有更好的推荐性能。 展开更多
关键词 自编码器 深度学习 序列建模 解耦学习 协同过滤
在线阅读 下载PDF
变分自编码器对甲基化缺失数据的填补 被引量:5
18
作者 王新峰 黄伟 《计算机工程与应用》 CSCD 北大核心 2022年第12期149-154,共6页
针对高通量测序技术因各种原因导致的DNA甲基化测序数据中包含部分缺失值的问题。提出一种基于变分自编码器的DNA甲基化缺失数据填补模型VAE-MethImp。VAE-MethImp是一种深度隐含空间生成模型,由编码层、隐含层和解码层组成,拥有强大的... 针对高通量测序技术因各种原因导致的DNA甲基化测序数据中包含部分缺失值的问题。提出一种基于变分自编码器的DNA甲基化缺失数据填补模型VAE-MethImp。VAE-MethImp是一种深度隐含空间生成模型,由编码层、隐含层和解码层组成,拥有强大的重构输入数据能力。编码层进行均值和方差的推断;隐含层是通过编码层输出的均值和方差计算出的输入数据的专属正态分布;解码层对隐含层包含的特征进行解码生成重构后的数据。通过在肺癌和乳腺癌上的填补实验证明,VAE-MethImp提取的特征更具信息性。在填补精度上,VAE-MethImp比对照方法(均值(Mean)、最近邻(KNN)、主成分分析(PCA)和奇异值分解(SVD))中最优的SVD提升了4.8%。生存分析实验结果显示VAE-MethImp填补的数据具有更好的预测性,同时也证明DNA甲基化与癌症的生存存在直接关联。 展开更多
关键词 深度学习 自编码器 DNA甲基化 数据填补 生存
在线阅读 下载PDF
基于变分自编码器的混合推荐算法 被引量:1
19
作者 张宇生 张桂珠 王晓锋 《计算机工程》 CAS CSCD 北大核心 2020年第12期96-104,共9页
较多传统推荐算法因未考虑曝光因素而难以解决冷启动问题。为此,通过引入曝光隐变量,提出一种基于变分自编码器的混合推荐算法。在协同过滤背景下使用马尔科夫链蒙特卡洛采样推断曝光隐变量和特征向量,在推断过程中将前一次迭代得到的... 较多传统推荐算法因未考虑曝光因素而难以解决冷启动问题。为此,通过引入曝光隐变量,提出一种基于变分自编码器的混合推荐算法。在协同过滤背景下使用马尔科夫链蒙特卡洛采样推断曝光隐变量和特征向量,在推断过程中将前一次迭代得到的分布结果作为先验,利用共轭关系直接得到参数后验,以提高推断精度。在此基础上,通过变分自编码器VAEe抽取用户曝光向量的隐特征,据此对该用户做曝光预测,同时训练变分自编码器VAEi抽取商品的协同隐特征,解决新商品的冷启动问题。在真实数据集上的实验结果表明,该算法能够同时提高旧商品和新商品的推荐性能。 展开更多
关键词 推荐算法 自编码器 马尔科夫链蒙特卡洛采样 协同过滤 深度学习
在线阅读 下载PDF
耦合变分自编码器及其在图像对生成中的应用 被引量:2
20
作者 侯璎真 翟俊海 申瑞彩 《小型微型计算机系统》 CSCD 北大核心 2021年第12期2626-2631,共6页
随着深度学习的发展,图像生成技术有了长足的进展,但大多数图像生成模型只能生成单一图像.针对这一问题,本文提出了一种耦合变分自编码器,它可以生成具有不同属性的人脸元组.现有的方法需要训练集的不同域中存在对应图像的元组,但是本... 随着深度学习的发展,图像生成技术有了长足的进展,但大多数图像生成模型只能生成单一图像.针对这一问题,本文提出了一种耦合变分自编码器,它可以生成具有不同属性的人脸元组.现有的方法需要训练集的不同域中存在对应图像的元组,但是本文提出的方法不需要任何对应图像的元组,就可以生成具有不同属性的图像元组.本文的方法是在耦合生成对抗网络的灵感下提出的,与原有方法不同,它通过训练耦合变分自编码器模型来学习不同属性的特征表示,以生成对应图像元组.相比较原方法,它可以通过学习高级特征表示更精确的生成图像元组.此外,本文还用耦合变分自编码器实现了无监督人脸属性转换以及人脸的相互转换.将提出的方法应用于多个学习任务,包括生成不同属性的人脸元组、无监督的人脸属性转换以及图像相互转换. 展开更多
关键词 深度学习 自编码器 元组 高级特征 属性转换
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部