随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ...随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。展开更多
多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些...多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些问题,本文提出了一种基于分布对齐变分自编码器的深度多视图聚类方法(Deep Multi-View Clustering based on Distribution Aligned Variational Autoencoder,DMVCDA).首先,针对特定视图我们利用多个变分自编码器从不同视图中提取潜在特征,并对特征的分布进行对齐,以挖掘包含基本信息的潜在特征;然后,引入视图权重参数,获取共享的潜在特征;最后,在潜在特征上建立面向聚类的损失目标,使得学习到的潜在特征更适合聚类任务,从而提高聚类精度.在五个公共多视图数据集上的实验结果表明,我们的模型在精确度(ACC)、标准互信息(NMI)和纯度(Purity)等多个聚类评价指标上均表现出优异的性能.展开更多
聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息...聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息进行融合以完成表征学习。提出一种融合变分图注意自编码器的深度聚类模型FVGTAEDC(Deep Clustering Model Based on Fusion Varitional Graph Attention Self-encoder),此模型通过联合自编码器和变分图注意自编码器进行聚类,模型中自编码器将变分图注意自编码器从网络中学习(低阶和高阶)结构表示进行集成,随后从原始数据中学习特征表示。在两个模块训练的同时,为了适应聚类任务,将自编码器模块融合节点和结构信息的表示特征进行自监督聚类训练。通过综合聚类损失、自编码器重构数据损失、变分图注意自编码器重构邻接矩阵损失、后验概率分布与先验概率分布相对熵损失,该模型可以有效聚合节点的属性和网络的结构,同时优化聚类标签分配和学习适合于聚类的表示特征。综合实验证明,该方法在5个现实数据集上的聚类效果均优于当前先进的深度聚类方法。展开更多
异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散−连续混合模型钉板分布作为变分自编...异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散−连续混合模型钉板分布作为变分自编码器的先验,模拟隐变量所在空间的稀疏性,得到数据特征的稀疏表示;其次,以所提出的自编码器构建深度支持向量网络,对特征空间进行压缩,并采用最优超球体区分正常数据和异常数据;再次,以数据特征和超球体中心之间的欧氏距离完成异常检测;最后,在基准数据集MNIST(modifiednational institute of standards and technology database)和Fashion-MNIST上的实验评估表明,与现存的异常检测算法相比,本文所提出的算法具有更好的检测效果。展开更多
文摘随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。
文摘多视图聚类(Multi-View Clustering,MVC)旨在利用不同视图间的一致性和互补性来高效处理多视图数据,是大数据分析中重要的研究方向之一.然而,现有方法无法有效学习到多视图信息间的潜在联系,且缺乏考虑视图重要性差异问题.针对上述这些问题,本文提出了一种基于分布对齐变分自编码器的深度多视图聚类方法(Deep Multi-View Clustering based on Distribution Aligned Variational Autoencoder,DMVCDA).首先,针对特定视图我们利用多个变分自编码器从不同视图中提取潜在特征,并对特征的分布进行对齐,以挖掘包含基本信息的潜在特征;然后,引入视图权重参数,获取共享的潜在特征;最后,在潜在特征上建立面向聚类的损失目标,使得学习到的潜在特征更适合聚类任务,从而提高聚类精度.在五个公共多视图数据集上的实验结果表明,我们的模型在精确度(ACC)、标准互信息(NMI)和纯度(Purity)等多个聚类评价指标上均表现出优异的性能.
文摘聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息进行融合以完成表征学习。提出一种融合变分图注意自编码器的深度聚类模型FVGTAEDC(Deep Clustering Model Based on Fusion Varitional Graph Attention Self-encoder),此模型通过联合自编码器和变分图注意自编码器进行聚类,模型中自编码器将变分图注意自编码器从网络中学习(低阶和高阶)结构表示进行集成,随后从原始数据中学习特征表示。在两个模块训练的同时,为了适应聚类任务,将自编码器模块融合节点和结构信息的表示特征进行自监督聚类训练。通过综合聚类损失、自编码器重构数据损失、变分图注意自编码器重构邻接矩阵损失、后验概率分布与先验概率分布相对熵损失,该模型可以有效聚合节点的属性和网络的结构,同时优化聚类标签分配和学习适合于聚类的表示特征。综合实验证明,该方法在5个现实数据集上的聚类效果均优于当前先进的深度聚类方法。
文摘异常检测由于其广泛的应用一直是数据挖掘中一个重要的研究分支,它有助于研究人员获得重要的信息进而对数据做出更好的决策。提出了一种基于钉板分布稀疏变分自编码器的异常检测模型。首先,使用离散−连续混合模型钉板分布作为变分自编码器的先验,模拟隐变量所在空间的稀疏性,得到数据特征的稀疏表示;其次,以所提出的自编码器构建深度支持向量网络,对特征空间进行压缩,并采用最优超球体区分正常数据和异常数据;再次,以数据特征和超球体中心之间的欧氏距离完成异常检测;最后,在基准数据集MNIST(modifiednational institute of standards and technology database)和Fashion-MNIST上的实验评估表明,与现存的异常检测算法相比,本文所提出的算法具有更好的检测效果。