期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于多尺度特征融合预处理与深度稀疏网络的并行磁共振成像重建
1
作者 薛磊 段继忠 《数据采集与处理》 北大核心 2025年第4期1082-1095,共14页
磁共振成像(Magnetic resonance imaging,MRI)在医学诊断中具有关键作用,但过长的扫描时间可能会导致患者不适或产生运动伪影。并行成像技术和压缩感知理论表明,可通过对k空间数据进行欠采样从而提高扫描速度,其中并行MRI是一种通过利... 磁共振成像(Magnetic resonance imaging,MRI)在医学诊断中具有关键作用,但过长的扫描时间可能会导致患者不适或产生运动伪影。并行成像技术和压缩感知理论表明,可通过对k空间数据进行欠采样从而提高扫描速度,其中并行MRI是一种通过利用多个接收线圈同时采集多个数据通道来加速成像过程的技术。深度学习凭借其强大的特征提取和模式识别能力,在欠采样MRI重建中展现出巨大的潜力。为克服现有技术的局限性(如需要自动校准信号、重建不稳定等),提出了一种创新的重建方法,旨在从欠采样的k空间数据中高效、准确地重建高质量的并行磁共振图像。该方法的核心骨架为深度稀疏网络,该网络通过将求解稀疏模型的迭代收缩阈值算法的迭代过程展开,转化为深度神经网络框架内的一系列可训练层。另外,还引入基于多尺度特征融合的自适应预处理模块,通过融合普通卷积与异型卷积核,进一步提升网络的稀疏表示能力。实验结果表明,相较于其他先进方法,本文提出的方法在多个数据集上均表现出更优的重建性能,包括更高的峰值信噪比和结构相似性指数,以及更低的高频误差范数。 展开更多
关键词 并行磁共振成像重建 深度学习 卷积神经网络 深度稀疏网络 多尺度特征融合
在线阅读 下载PDF
基于自适应深度稀疏网络的在线跟踪算法 被引量:3
2
作者 侯志强 王鑫 +2 位作者 余旺盛 戴铂 金泽芬芬 《电子与信息学报》 EI CSCD 北大核心 2017年第5期1079-1087,共9页
视觉跟踪中,高效鲁棒的特征表达是解决复杂环境下跟踪漂移问题的关键。该文针对深层网络预训练复杂费时及单网络跟踪易漂移的问题,在粒子滤波框架下,提出一种基于自适应深度稀疏网络的在线跟踪算法。该算法利用Re LU激活函数,针对不同... 视觉跟踪中,高效鲁棒的特征表达是解决复杂环境下跟踪漂移问题的关键。该文针对深层网络预训练复杂费时及单网络跟踪易漂移的问题,在粒子滤波框架下,提出一种基于自适应深度稀疏网络的在线跟踪算法。该算法利用Re LU激活函数,针对不同类型目标构建了一种具有自适应选择性的深度稀疏网络结构,仅通过有限标签样本的在线训练,就可得到鲁棒的跟踪网络。实验数据表明:与当前主流的跟踪算法相比,该算法的平均跟踪成功率和精度均为最好,且与同样基于深度学习的DLT算法相比分别提高了20.64%和17.72%。在光照变化、相似背景等复杂环境下,该算法表现出了良好的鲁棒性,能够有效地解决跟踪漂移问题。 展开更多
关键词 视觉跟踪 在线训练 深度学习 自适应深度稀疏网络
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
3
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于深度稀疏自编码网络和场景分类器的电网气象故障预警方法 被引量:8
4
作者 胡谅平 丛伟 +3 位作者 徐安馨 魏振 邱吉福 陈明 《电力系统保护与控制》 EI CSCD 北大核心 2022年第20期68-78,共11页
为保证电网安全稳定运行,提高电网防灾减灾和弹性水平,提出了一种基于深度稀疏自编码网络和场景分类器的电网气象故障预警方法。首先,采用主客观权重相结合的动态赋权方法,对气象因子进行初始赋权,以合理表征不同气象因子对电网故障的... 为保证电网安全稳定运行,提高电网防灾减灾和弹性水平,提出了一种基于深度稀疏自编码网络和场景分类器的电网气象故障预警方法。首先,采用主客观权重相结合的动态赋权方法,对气象因子进行初始赋权,以合理表征不同气象因子对电网故障的影响程度。然后,对传统的深度自编码网络增加稀疏性约束条件,以提高网络训练的收敛性,并在深度自编码网络的最后一层增加场景分类器,以提高气象因子与电网故障场景间关联关系的合理性。最后,将带权重的气象因子以及设备因子和环境因子作为深度稀疏自编码网络的输入,利用支持向量机构建多因素耦合的电网气象灾害故障预警模型。采用实际电网故障算例验证了所提方法的有效性。 展开更多
关键词 电网气象故障 预警方法 动态组合权重 场景分类器 深度稀疏自编码网络
在线阅读 下载PDF
深度稀疏自编码网络识别飞行员疲劳状态 被引量:3
5
作者 储银雪 陆智俊 +1 位作者 裘旭益 吴奇 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第6期850-857,共8页
针对飞行员疲劳状态识别的复杂性和准确性,提出一种基于脑电信号的深度学习模型.首先对飞行员脑电信号进行滤波分解,提取delta波(0.5~4 Hz)、theta波(5~8 Hz)、alpha波(7~14 Hz)、beta波(14~30 Hz),提取基于脑电节律波的频域特征,作为... 针对飞行员疲劳状态识别的复杂性和准确性,提出一种基于脑电信号的深度学习模型.首先对飞行员脑电信号进行滤波分解,提取delta波(0.5~4 Hz)、theta波(5~8 Hz)、alpha波(7~14 Hz)、beta波(14~30 Hz),提取基于脑电节律波的频域特征,作为识别模型的输入向量.其次,将一种基于深度稀疏自编码网络–Softmax模型用于飞行员疲劳状态识别,并与单层的稀疏自编码网络–Softmax和传统方法主成分分析(PCA)–Softmax模型识别结果进行比较.最后,实验结果显示,针对飞行员疲劳状态识别问题,所建立的学习模型具有很好的分类识别效果,具有较好的工程推广价值. 展开更多
关键词 飞行员疲劳 脑电信号 深度稀疏自编码网络 Softmax分类器
在线阅读 下载PDF
基于稀疏深度神经网络的电磁信号调制识别 被引量:5
6
作者 杨小蒙 张涛 +1 位作者 庄建军 唐震 《电讯技术》 北大核心 2023年第2期151-157,共7页
为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达... 为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达;然后,基于星座图中各信号点密度大小对星座图进行上色,增强星座图中信号特征;最后,通过SDNN对增强后的星座图进行识别分类。实验结果表明,SDNN模型选取合适的剪枝率后,能够有效降低模型存储规模和计算量,其中模型参数压缩了72%,浮点运算量压缩了45%,与原模型97%的综合识别率相比,稀疏化处理后模型的综合识别率为96.8%,在小幅度识别精度损失范围内大幅降低了模型复杂度。 展开更多
关键词 电磁信号 调制识别 星座图 稀疏深度神经网络(SDNN)
在线阅读 下载PDF
基于深度稀疏学习的鲁棒视觉跟踪 被引量:2
7
作者 王鑫 侯志强 +2 位作者 余旺盛 戴铂 金泽芬芬 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第12期2554-2563,共10页
视觉跟踪中,高效鲁棒的特征表达是复杂环境下影响跟踪性能的重要因素。提出一种深度稀疏神经网络模型,在提取更加本质抽象特征的同时,避免了复杂费时的模型预训练过程。对单一正样本进行数据扩充,解决了在线跟踪时正负样本不平衡的问题... 视觉跟踪中,高效鲁棒的特征表达是复杂环境下影响跟踪性能的重要因素。提出一种深度稀疏神经网络模型,在提取更加本质抽象特征的同时,避免了复杂费时的模型预训练过程。对单一正样本进行数据扩充,解决了在线跟踪时正负样本不平衡的问题,提高了模型稳定性。利用密集采样搜索算法,生成局部置信图,克服了采样粒子漂移现象。为进一步提高模型的鲁棒性,还分别提出了相应的模型参数更新和搜索区域更新策略。大量实验结果表明:与当前主流跟踪算法相比,该算法对于复杂环境下的跟踪问题具有良好的鲁棒性,有效地抑制了跟踪漂移,且具有较快的跟踪速率。 展开更多
关键词 视觉跟踪 深度学习 深度稀疏神经网络 稀疏自编码器 局部置信图
在线阅读 下载PDF
基于主动深度学习的高光谱影像分类 被引量:13
8
作者 程圆娥 周绍光 +1 位作者 袁春琦 陈蒙蒙 《计算机工程与应用》 CSCD 北大核心 2017年第17期192-196,248,共6页
针对当前高光谱遥感影像分类人工标注样本费时费力,大量未标注样本未得到有效利用以及主要利用光谱信息而忽视空间信息等问题,提出了一种空-谱信息与主动深度学习相结合的高光谱影像分类方法。首先利用主成分分析对原始影像进行降维,在... 针对当前高光谱遥感影像分类人工标注样本费时费力,大量未标注样本未得到有效利用以及主要利用光谱信息而忽视空间信息等问题,提出了一种空-谱信息与主动深度学习相结合的高光谱影像分类方法。首先利用主成分分析对原始影像进行降维,在此基础上提取像素的一正方形小邻域作为该像素的空间信息并结合其原始光谱信息得到空谱特征。然后,通过稀疏自编码器得到原始数据的稀疏特征表达,并通过逐层无监督学习稀疏自编码器构建深度神经网络,输出原始数据的深度特征,将其连接到softmax分类器,利用少量标记样本以监督学习的方式完成模型的精调。最后,利用主动学习算法选择最不确定性样本对其进行标注,并加入至训练样本以提高分类器的分类效果。分别对Pavia U影像和Pavia C影像进行分类实验的结果表明,该方法在少量标记样本情况下,相对于传统方法能有效地提高分类精度。 展开更多
关键词 高光谱遥感影像分类 空谱特征 堆栈式稀疏自编码深度网络 主动学习
在线阅读 下载PDF
基于深度学习的完全填充型熔融沉积成型零件质量预测方法 被引量:4
9
作者 董海 高秀秀 魏铭琦 《计算机集成制造系统》 EI CSCD 北大核心 2023年第1期200-211,共12页
抗拉强度、翘曲度和表面粗糙度是衡量熔融沉积成型(FDM)零件质量的重要指标,对其准确、稳定的预测有助于FDM工艺的发展。为此,提出一种基于优化深度信念网络的完全填充型FDM零件质量预测方法。首先根据FDM的生产工艺选取影响零件质量指... 抗拉强度、翘曲度和表面粗糙度是衡量熔融沉积成型(FDM)零件质量的重要指标,对其准确、稳定的预测有助于FDM工艺的发展。为此,提出一种基于优化深度信念网络的完全填充型FDM零件质量预测方法。首先根据FDM的生产工艺选取影响零件质量指标的主要变量,利用相关性分析方法确定对产品质量影响最大的工艺参数组合,以获取预测模型的输入变量;其次以10—折交叉验证的验证误差作为适应度值,基于网格搜索确定稀疏约束深度信念网络(SDBN)的最佳超参数组合,采用自适应布谷鸟搜索(ACS)算法对SDBN进行优化,构建完全填充型FDM零件质量预测模型;最后,将所提的ACS-SDBN与ACS-DBN、深度信念网络(DBN)和BP的预测结果进行对比,结果表明基于ACS-SDBN模型的完全填充型FDM零件质量预测方法具有更好的预测精度和稳定性。 展开更多
关键词 熔融沉积成型零件 质量预测 10—折交叉验证 稀疏深度信念网络 自适应布谷鸟搜索算法 增材制造
在线阅读 下载PDF
Alpha稳定分布噪声和多径干扰下的无人机集群MIMO信号调制识别 被引量:1
10
作者 平嘉蓉 李赛 林云航 《系统工程与电子技术》 EI CSCD 北大核心 2024年第11期3920-3929,共10页
针对具有多径效应、大气噪声等复杂因素的无人机(unmanned aerial vehicle,UAV)集群多输入多输出(multiple-input multiple-output,MIMO)信道的信号调制方式识别问题,提出基于循环谱特征和高阶累积量特征的调制识别方法。首先,根据UAV... 针对具有多径效应、大气噪声等复杂因素的无人机(unmanned aerial vehicle,UAV)集群多输入多输出(multiple-input multiple-output,MIMO)信道的信号调制方式识别问题,提出基于循环谱特征和高阶累积量特征的调制识别方法。首先,根据UAV集群复杂通信信道环境,建立Alpha稳定分布噪声干扰和多径干扰下的UAV集群MIMO信道。其次,分析MIMO接收信号的高阶累积量特征和循环谱特征,提取出判别调制识别方式能力强的特征值,构造集群信号特征样本。最后,将特征样本输入深度稀疏自编码网络,实现6种调制方式的识别。仿真结果表明,该调制识别方法在UAV集群复杂通信环境下是有效的,当识别准确率为90%时,深度稀疏自编码网络识别性能优于多层感知机识别性能约1 dB。在存在直射径的MIMO多径信道中,当混合信噪比为0 dB时,识别准确率均能达到96%,在低信噪比下有较高的识别准确率,对复杂的信道环境下的MIMO信号识别具有鲁棒性。 展开更多
关键词 调制识别 多输入多输出 循环谱 高阶累积量 深度稀疏自编码网络
在线阅读 下载PDF
基于指标关联的舰载机出动架次率预测方法 被引量:1
11
作者 邓嘉宁 李海旭 +3 位作者 安强林 沙恩来 王泽 吴宇 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3515-3523,共9页
舰载机出动架次率作为衡量航母战斗力的关键指标,对航母舰载机系统的安全高效运行十分重要。建立根据实时数据预测当前出动架次率的模型,将会为航母指挥官的实时调度提供重要参考。首先,从指标原始数据出发,基于大数据关联度分析、社区... 舰载机出动架次率作为衡量航母战斗力的关键指标,对航母舰载机系统的安全高效运行十分重要。建立根据实时数据预测当前出动架次率的模型,将会为航母指挥官的实时调度提供重要参考。首先,从指标原始数据出发,基于大数据关联度分析、社区发现及主成分分析法,确定指标之间的树状关系,从而建立稀疏深度神经网络。同时,为了保证更好的训练效果,选取标准化、L2正则化、Adam优化器作为神经网络的优化算法进行训练。仿真结果表明,在航母舰载机持续性出动任务下,所提方法能够实现对舰载机出动架次率的快速、准确、实时预测。 展开更多
关键词 舰载机出动架次率 稀疏深度神经网络 Adam优化器 数据标准化 正则化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部