期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
深度神经网络模型任务切分及并行优化方法 被引量:1
1
作者 巨涛 刘帅 +1 位作者 王志强 李林娟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第9期2739-2752,共14页
为解决传统手工切分神经网络模型计算任务并行化方法面临的并行化难度大、训练耗时长、设备利用率低等问题,提出了一种基于深度神经网络(DNN)模型特性感知的任务切分及并行优化方法。结合硬件计算环境,对模型计算特性进行动态分析,获取... 为解决传统手工切分神经网络模型计算任务并行化方法面临的并行化难度大、训练耗时长、设备利用率低等问题,提出了一种基于深度神经网络(DNN)模型特性感知的任务切分及并行优化方法。结合硬件计算环境,对模型计算特性进行动态分析,获取模型内部相关性和各类参数属性,构建原始计算任务有向无环图(DAG);利用增强反链,构建DAG节点间可分区聚类的拓扑关系,将原始DAG转换为易于切分的反链DAG;通过拓扑排序生成反链DAG状态序列,并使用动态规划将状态序列切分为不同执行阶段,分析最佳分割点进行模型切分,实现模型分区与各GPU间动态匹配;对批量进行微处理,通过引入流水线并行实现多迭代密集训练,提高GPU利用率,减少训练耗时。实验结果表明:与已有模型切分方法相比,在CIFAR-10数据集上,所提模型切分及并行优化方法可实现各GPU间训练任务负载均衡,在保证模型训练精度的同时,4 GPU加速比达到3.4,8 GPU加速比为3.76。 展开更多
关键词 深度神经网络模型并行 模型切分 流水线并行 反链 并行优化
在线阅读 下载PDF
深度神经网络模型数字水印技术研究进展综述 被引量:8
2
作者 夏道勋 王林娜 +1 位作者 宋允飞 罗星智 《科学技术与工程》 北大核心 2023年第5期1799-1811,共13页
近年来,深度神经网络模型在各种应用领域都取得了巨大的成功,训练先进的深度神经网络模型仍需要大规模的数据集、高昂的算力成本和优异的算法思想,生成的深度神经网络模型成为一种宝贵的资源,也是完成人工智能应用领域某项特定任务的核... 近年来,深度神经网络模型在各种应用领域都取得了巨大的成功,训练先进的深度神经网络模型仍需要大规模的数据集、高昂的算力成本和优异的算法思想,生成的深度神经网络模型成为一种宝贵的资源,也是完成人工智能应用领域某项特定任务的核心算法。因此,深度神经网络模型的安全则变得极其重要,利用数字水印版权保护技术保障模型的安全已经成为人工智能安全领域一个重要的研究方向。为了综述深度神经网络模型数字水印版权保护技术的最新研究进展,首先介绍了深度神经网络模型数字水印技术分类;其次介绍了深度神经网络模型数字水印版权保护技术基础概况;再次归纳总结了深度神经网络模型数字水印版权保护技术的研究方法;最后总结并展望了深度神经网络模型数字水印版权保护领域的研究重点和发展方向。 展开更多
关键词 数字水印 版权保护 深度神经网络模型 深度神经网络攻击和防御
在线阅读 下载PDF
冷连轧轧制力深度神经网络模型泛化能力并行优化 被引量:1
3
作者 吴爽 闫奕 +1 位作者 李爽 李峰 《机械设计与制造》 北大核心 2023年第8期171-174,共4页
为了更好调控冷连轧板厚参数,设计了一种冷连轧轧制力深度神经网络模型,增强了冷连轧模型的控制效果。选择2030冷连轧结构进行研究,对多输入多输出(MIMO)深度神经网络(DNN)进行预处理,针对多线程CPU与GPU实施了优化,对比了神经网络模型... 为了更好调控冷连轧板厚参数,设计了一种冷连轧轧制力深度神经网络模型,增强了冷连轧模型的控制效果。选择2030冷连轧结构进行研究,对多输入多输出(MIMO)深度神经网络(DNN)进行预处理,针对多线程CPU与GPU实施了优化,对比了神经网络模型和冷连轧系统Siemens模型误差。研究结果表明:L-M算法表现出了更优的收敛稳定性、测试和验证性能、梯度下降趋势,并且收敛速度也更快。以随机方式选择200个数据并测定泛化性能测试得到,L-M算法获得了比SCG算法更大的相关系数。都是随着隐含层数的增加,获得了性能更优的神经网络模型,并且都会增加训练时间。从各项模型指标分析,L-M算法都比SCG算法的性能更优。构建神经网络轧制力模型总共包含二个隐含层、节点数介于17~30、通过L-M算法进行训练。采用神经网络轧制力模型得到的结果与实测值之间的误差比Siemens机理模型和测试值的误差更低。 展开更多
关键词 深度神经网络模型 L-M算法 SCG算法 并行优化 轧制力模型
在线阅读 下载PDF
基于多精度深度神经网络的汽车气动外形优化设计方法
4
作者 邬晓敬 高然 马龙 《空气动力学学报》 CSCD 北大核心 2024年第7期103-111,I0002,共10页
在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经... 在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经网络(multi-fidelity deep neural network, MFDNN)的汽车外形优化设计方法,以减少优化设计中所需的高精度数据个数,从而有效提升优化速度、降低优化成本。将所发展的优化方法应用于快背式MIRA标准模型减阻优化设计中,优化结果表明,该方法能够充分融合不同精度数据所蕴含的知识,加速气动外形优化进程,提升优化效率。以收敛用时作为评价指标,在取得相近或更优优化结果的前提下,基于多精度神经网络的优化框架的收敛速度是基于单精度神经网络的离线优化框架的5.85倍,是基于单精度神经网络的在线优化框架的2.81倍。 展开更多
关键词 多精度深度神经网络模型 汽车气动外形优化设计 迁移学习 数据融合
在线阅读 下载PDF
融合粗细粒度信息的长答案选择神经网络模型 被引量:1
5
作者 孙源 王健 +2 位作者 张益嘉 钱凌飞 林鸿飞 《中文信息学报》 CSCD 北大核心 2021年第4期100-109,共10页
答案选择是问答系统中的关键技术之一,而长答案选择在社区问答系统、开放域问答系统等非实体问答系统中有着重要地位。该文提出了一个结合粗粒度(句子级别)和细粒度(单词或n元单词级)信息的模型,缓解了传统句子建模方式应用于长答案选... 答案选择是问答系统中的关键技术之一,而长答案选择在社区问答系统、开放域问答系统等非实体问答系统中有着重要地位。该文提出了一个结合粗粒度(句子级别)和细粒度(单词或n元单词级)信息的模型,缓解了传统句子建模方式应用于长答案选择时不能把握住句子的全部重要信息的不足和使用比较-聚合框架处理该类问题时不能利用好序列全局信息的缺点。该融合粗细粒度信息的长答案选择模型在不引入多余训练参数的情况下使用了细粒度信息,有效提升了长答案选择的准确率。在InsuranceQA答案选择数据集上的实验显示,该模型比基于句子建模的当前最高水平模型准确率提高3.30%。同时该文的研究方法可为其他长文本匹配相关研究提供参考。 展开更多
关键词 长答案选择 多粒度 深度神经网络模型
在线阅读 下载PDF
基于三维深度卷积神经网络的车间生产行为识别 被引量:18
6
作者 刘庭煜 陆增 +3 位作者 孙毅锋 刘芳 何必秒 钟杰 《计算机集成制造系统》 EI CSCD 北大核心 2020年第8期2143-2156,共14页
传统的依赖视频监控的人员行为管理方式费时且易产生疏漏,难以适用复杂的生产制造环境,为了实现更加有效的人员行为管理,针对生产车间工作人员行为识别与智能监控问题,提出一种基于人体骨架信息的生产行为识别方法。基于三维深度视觉传... 传统的依赖视频监控的人员行为管理方式费时且易产生疏漏,难以适用复杂的生产制造环境,为了实现更加有效的人员行为管理,针对生产车间工作人员行为识别与智能监控问题,提出一种基于人体骨架信息的生产行为识别方法。基于三维深度视觉传感器采集人体骨架关节位置数据,用标准化重构方法对骨架关节数据进行归一化处理,合成人体行为的时空特征RGB图像。在此基础上构建深度卷积神经网络模型,进行时空域的生产行为识别。最后通过CUDA GPU加速环境下面向MSR-Action3D数据集和自建验证数据集NJUST3D进行实验验证,说明所提方法具有较高的准确率和实用价值。 展开更多
关键词 深度视觉 行为识别 骨架 深度学习 深度卷积神经网络模型
在线阅读 下载PDF
深度神经网络轧制力建模及其并行优化研究 被引量:2
7
作者 刘翰培 汪宇轩 +1 位作者 王亚琴 罗小川 《控制工程》 CSCD 北大核心 2022年第8期1379-1386,共8页
冷连轧过程控制的轧制力模型是整个轧制过程计算机控制的基础。为提高5机架2030冷连轧系统轧制力模型的精度和适用性,提出了多输入多输出深度神经网络轧制力模型的数据预处理、建模和并行优化方法。对含有不同隐含层数和节点数的神经网... 冷连轧过程控制的轧制力模型是整个轧制过程计算机控制的基础。为提高5机架2030冷连轧系统轧制力模型的精度和适用性,提出了多输入多输出深度神经网络轧制力模型的数据预处理、建模和并行优化方法。对含有不同隐含层数和节点数的神经网络,采用不同训练算法(SCG算法和L-M算法)与不同优化方法(多线程CPU、单GPU和多线程CPU+GPU),研究了神经网络结构、训练算法和优化方法对神经网络轧制力模型的性能、训练时长、线性相关系数的影响。研究结果表明:含有2个隐含层、采用L-M算法和多线程CPU优化方法可获得综合性能最优的神经网络轧制力模型;神经网络轧制力模型的计算误差远小于在线使用的Siemens轧制力模型的计算误差。 展开更多
关键词 深度神经网络轧制力模型 L-M算法 SCG算法 并行优化 轧制力模型
在线阅读 下载PDF
基于注意力机制神经网络的数学教学质量预测 被引量:2
8
作者 李琳 赵锐 江晋 《现代电子技术》 2023年第14期175-179,共5页
数学教学质量评价是一个多因素、多层次的复杂过程,为提升数学教学质量评估的准确性和效率,文中提出一种基于注意力机制优化的神经网络评估预测方法。在数学教学评价一级指标与二级指标之间构建注意力增强层,提取重要的指标特征,并利用... 数学教学质量评价是一个多因素、多层次的复杂过程,为提升数学教学质量评估的准确性和效率,文中提出一种基于注意力机制优化的神经网络评估预测方法。在数学教学评价一级指标与二级指标之间构建注意力增强层,提取重要的指标特征,并利用提取的特征构建神经网络评估预测模型。仿真结果表明,所提方法具有模型结构高效、预测准确度高的效果,在教学管理中具有一定的应用价值。 展开更多
关键词 高校教学管理 数学教学质量评估 深度神经网络预测模型 注意力机制 注意力分布 深度学习
在线阅读 下载PDF
基于特征增强与时序感知的洪水预报模型 被引量:5
9
作者 巫义锐 郭鸿飞 +1 位作者 钱程 王文鹏 《人民长江》 北大核心 2021年第S02期21-26,44,共7页
面对洪水发生频率低且机制复杂的问题,提出了一类深度神经网络模型(ET-LSTM)。该模型通过构建特征增强模块提升了小样本情况下的洪水预报能力,通过结合时序感知模块的深度神经网络模型,构建洪水因子与径流量间的非线性关系,挖掘洪水因... 面对洪水发生频率低且机制复杂的问题,提出了一类深度神经网络模型(ET-LSTM)。该模型通过构建特征增强模块提升了小样本情况下的洪水预报能力,通过结合时序感知模块的深度神经网络模型,构建洪水因子与径流量间的非线性关系,挖掘洪水因子间的隐含时序关联关系。首先利用一维卷积神经网络构建洪水深度特征表达;然后,结合瓶颈(BottleNeck)结构设计,通过特征通道间的信息交换,增强洪水深度特征的表达能力;最后,构建时序无关和时序相关模块,分别提取深度特征中的时序相关与时序无关部分,进一步提升深度特征的时变表达能力,并在流域数据集上进行对比分析。结果表明:该方法在模拟精度、相关性系数等指标上优于对比方法,能够更好地拟合真实径流量数据,提升洪水预报的准确性与预见期。 展开更多
关键词 洪水预报 长短时记忆网络 特征增强 时序感知 深度神经网络模型
在线阅读 下载PDF
基于深度学习的联邦集成算法
10
作者 罗长银 陈学斌 +2 位作者 宋尚文 张淑芬 刘之瑜 《应用科学学报》 CAS CSCD 北大核心 2022年第3期493-510,共18页
联邦学习是多源隐私数据保护领域研究的热点,其框架在满足数据不出本地的情况下,可以训练出多方均满意的共同模型,但存在本地模型参数难以整合且无法在安全的情况下将多源数据充分使用的问题,因此提出基于深度学习的联邦集成算法,将深... 联邦学习是多源隐私数据保护领域研究的热点,其框架在满足数据不出本地的情况下,可以训练出多方均满意的共同模型,但存在本地模型参数难以整合且无法在安全的情况下将多源数据充分使用的问题,因此提出基于深度学习的联邦集成算法,将深度学习与集成学习应用到联邦学习的框架下,通过优化本地模型的参数,提高了本地模型准确率;使用不同的集成算法来整合本地模型参数,在提升模型准确率的同时兼顾了多源数据的安全性。实验结果表明:与传统多源数据处理技术相比,该算法在mnist、digits、letter、wine数据集训练模型的准确率依次提升1%、8%、-1%、1%,在保证准确率的同时也提升多源数据与模型的安全性,具有很重要的应用价值。 展开更多
关键词 联邦学习 联邦集成算法 深度神经网络模型 集成算法 深度学习
在线阅读 下载PDF
基于语谱图提取深度空间注意特征的语音情感识别算法 被引量:6
11
作者 王金华 应娜 +2 位作者 朱辰都 刘兆森 蔡哲栋 《电信科学》 2019年第7期100-108,共9页
从语音情感特征的提取和分类建模出发,以混合卷积神经网络模型为基础,改进特征提取中的Itti模型,包括:增加通过局部二值模式提取的纹理特征;结合听觉敏感度权重提取情感强相关特征。然后提出通过特征约束条件提取标定权重特征的约束挤... 从语音情感特征的提取和分类建模出发,以混合卷积神经网络模型为基础,改进特征提取中的Itti模型,包括:增加通过局部二值模式提取的纹理特征;结合听觉敏感度权重提取情感强相关特征。然后提出通过特征约束条件提取标定权重特征的约束挤压和激励网络结构;最后形成以VGGnet和长短时记忆网络混合网络为基础的微调模型,进一步提升了情感表征能力。通过在自然情感数据库和柏林德语数据库上进行验证,该模型在情感识别率上有明显的上升,相较于基准模型提升了8.43%,同时对比了本模型在自然数据库(FAU-AEC)和柏林数据库(EMO-DB)上的识别效果,实验结果证明模型具有良好的泛化性。 展开更多
关键词 情感识别 深度混合神经网络模型 视觉注意机制
在线阅读 下载PDF
基于DBN-DNN的离散制造车间订单完工期预测方法 被引量:12
12
作者 刘道元 郭宇 +2 位作者 黄少华 方伟光 杨能俊 《计算机集成制造系统》 EI CSCD 北大核心 2020年第9期2445-2452,共8页
准确的订单完工期预测是离散制造车间生产计划制定、调度排产、产品按时交付的重要保证。基于海量的多源制造数据,设计了一种基于深度置信网络—深度神经网络(DBN-DNN)的预测模型,用于实现具有大数据特征的制造系统订单完工期快速预测... 准确的订单完工期预测是离散制造车间生产计划制定、调度排产、产品按时交付的重要保证。基于海量的多源制造数据,设计了一种基于深度置信网络—深度神经网络(DBN-DNN)的预测模型,用于实现具有大数据特征的制造系统订单完工期快速预测。选取ReLU为激活函数训练深度置信网络以提取特征,完成预训练;将预训练网络的权重和偏置参数传递至深度神经网络作为预测模型的初始化参数,并增加dropout和L2正则化,避免预测模型的过拟合问题。以某航天机加车间的10000条具有1059个特征的样本为数据集进行了数值实验,通过与多隐含层反向传播神经网络、主成分分析和反向传播神经网络的结合、主成分分析和支持向量回归的结合3种常用预测模型的对比分析,验证了所建立的预测模型在准确度和适用性方面具有更优的性能。 展开更多
关键词 大数据 订单完工期 回归预测 深度置信网络深度神经网络模型 离散制造车间
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部