期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
一种改进的深度神经网络后门攻击方法 被引量:1
1
作者 任时萱 王茂宇 赵辉 《信息网络安全》 CSCD 北大核心 2021年第5期82-89,共8页
触发器生成网络是深度神经网络后门攻击方法的关键算法。现有的触发器生成网络有以下两个主要问题:第一,触发器候选数据集使用静态的人工选择,未考虑候选数据集对目的神经元的敏感性,存在冗余数据。第二,触发器生成网络仅考虑如何更好... 触发器生成网络是深度神经网络后门攻击方法的关键算法。现有的触发器生成网络有以下两个主要问题:第一,触发器候选数据集使用静态的人工选择,未考虑候选数据集对目的神经元的敏感性,存在冗余数据。第二,触发器生成网络仅考虑如何更好地激活目的神经元,并未考虑触发器的抗检测问题。针对候选数据集冗余的问题,文章使用敏感度分析方法,选择相对目标神经元更敏感的数据集从而降低冗余数据。面对现有的触发器检测方法,改进的触发器生成网络可以在保证攻击准确度的情况下,通过设计聚类结果与随机化混淆作为综合惩罚的方法,使生成的触发器绕过检测。实验结果表明,使用这种方法生成的触发器可以在保持较高攻击精确率的同时,在聚类检测方法上表现出较低的攻击检测率,在STRIP扰动检测方法上表现出较高的攻击拒识率。 展开更多
关键词 深度神经网络后门攻击 触发器生成网络 目的神经 触发器
在线阅读 下载PDF
一种基于深度分区聚合的神经网络后门样本过滤方法
2
作者 郭嘉铭 杜文韬 杨超 《计算机科学》 北大核心 2025年第11期425-433,共9页
深度神经网络易受后门攻击,攻击者可以通过数据投毒的方式植入后门并劫持模型的行为。其中,类特定攻击映射关系复杂、与正常任务关联紧密,因而能绕过大多数防御方法,具有更高的威胁性。文中研究了类特定攻击在植入后门的过程中攻击成功... 深度神经网络易受后门攻击,攻击者可以通过数据投毒的方式植入后门并劫持模型的行为。其中,类特定攻击映射关系复杂、与正常任务关联紧密,因而能绕过大多数防御方法,具有更高的威胁性。文中研究了类特定攻击在植入后门的过程中攻击成功率与模型分类性能的关系,总结出3条性质,并以此为基础设计了一种针对类特定攻击的样本过滤方法。该方法使用深度分区聚合(Deep Partition Aggregation,DPA)的集成学习方法与投票法对数据集进行反复迭代过滤。根据类特定攻击的3条性质,从数学层面证明了该过滤方法的有效性,并在标准分类数据集上进行了大量实验,在迭代4轮后均能过滤95%以上的后门样本。同时,与最新的样本过滤方法的对比实验结果,体现了所提过滤方法在针对类特定攻击时的优越性。文中实验基于Github的开源项目backdoorbox开展。 展开更多
关键词 深度学习 数据投毒 后门攻击 类特定攻击 集成学习 样本过滤
在线阅读 下载PDF
针对深度神经网络的高效光学对抗攻击
3
作者 戚富琪 高海昌 +1 位作者 李博凌 邹翔 《西安电子科技大学学报》 北大核心 2025年第2期1-12,共12页
随着对抗攻击算法的不断更新,深度神经网络面临的安全风险愈加严峻。由于光学现象在真实世界中出现频繁,对光学对抗攻击的抗干扰能力直观反应了深度神经网络在实际应用中的安全性。然而,目前光学对抗攻击方面的研究普遍存在光学对抗扰... 随着对抗攻击算法的不断更新,深度神经网络面临的安全风险愈加严峻。由于光学现象在真实世界中出现频繁,对光学对抗攻击的抗干扰能力直观反应了深度神经网络在实际应用中的安全性。然而,目前光学对抗攻击方面的研究普遍存在光学对抗扰动失真和优化不稳定的问题。为此,提出了一种新型光学攻击方法AdvFlare,以便于探究眩光扰动对深度神经网络安全性的影响。AdvFlare构造了一种参数化的眩光仿真模型,该模型对眩光的形状和颜色等多个属性进行建模,仿真效果好。在此基础上,提出了参数空间限制、随机初始化和分步优化的策略,解决了对抗扰动失真与收敛困难的问题。实验结果表明,与现有方法相比,AdvFlare能够以极高的成功率让深度神经网络误分类,具有稳定和扰动逼真度高的优点。此外,还发现,无论在数字域还是物理域,利用AdvFlare进行对抗训练能够显著提高深度神经网络的抗干扰能力,对提高公共交通场景下的模型鲁棒性有启发作用。 展开更多
关键词 深度神经网络 对抗攻击 眩光效应 模型鲁棒性 对抗训练
在线阅读 下载PDF
基于多模态深度神经网络的无线传感网络DDoS攻击防御算法
4
作者 刘阳 李貌 冯浩 《传感技术学报》 北大核心 2025年第6期1097-1101,共5页
当无线传感网络遭受DDoS攻击时,极有可能导致网络服务中断、资源耗尽或网络性能下降等问题,严重威胁网络的安全性。为此,提出了基于多模态深度神经网络的无线传感网络DDoS攻击防御算法。将无线传感网络信号进行短时阶傅里叶变换(Short-T... 当无线传感网络遭受DDoS攻击时,极有可能导致网络服务中断、资源耗尽或网络性能下降等问题,严重威胁网络的安全性。为此,提出了基于多模态深度神经网络的无线传感网络DDoS攻击防御算法。将无线传感网络信号进行短时阶傅里叶变换(Short-Time Fourier Transform,STFT),对STFT后的信号进行奇异值分解(Singular Value Decomposition,SVD),以增强数据信号。将增强后的数据信号输入到多模态深度神经网络模型,并利用卷积层提取多模态特征,通过多模态特征的融合和学习,增强模型区分攻击数据和正常数据的能力。采用EWC算法对模型中的参数进行更新,进一步提高防御效果。仿真结果表明,所提算法的报文到达率在0.94以上,网络传输延时低于0.03 s,误警率稳定在0.6%以内,具有良好的DDoS攻击防御性能。 展开更多
关键词 无线传感网络 DDOS攻击防御 多模态深度神经网络 奇异值分解 参数更新
在线阅读 下载PDF
神经网络后门攻击与防御综述 被引量:4
5
作者 汪旭童 尹捷 +4 位作者 刘潮歌 徐辰晨 黄昊 王志 张方娇 《计算机学报》 EI CAS CSCD 北大核心 2024年第8期1713-1743,共31页
当前,深度神经网络(Deep Neural Network,DNN)得到了迅速发展和广泛应用,由于其具有数据集庞大、模型架构复杂的特点,用户在训练模型的过程中通常需要依赖数据样本、预训练模型等第三方资源.然而,不可信的第三方资源为神经网络模型的安... 当前,深度神经网络(Deep Neural Network,DNN)得到了迅速发展和广泛应用,由于其具有数据集庞大、模型架构复杂的特点,用户在训练模型的过程中通常需要依赖数据样本、预训练模型等第三方资源.然而,不可信的第三方资源为神经网络模型的安全带来了巨大的威胁,最典型的是神经网络后门攻击.攻击者通过修改数据集或模型的方式实现向模型中植入后门,该后门能够与样本中的触发器(一种特定的标记)和指定类别建立强连接关系,从而使得模型对带有触发器的样本预测为指定类别.为了更深入地了解神经网络后门攻击原理与防御方法,本文对神经网络后门攻击和防御进行了体系化的梳理和分析.首先,本文提出了神经网络后门攻击的四大要素,并建立了神经网络后门攻防模型,阐述了在训练神经网络的四个常规阶段里可能受到的后门攻击方式和防御方式;其次,从神经网络后门攻击和防御两个角度,分别基于攻防者能力,从攻防方式、关键技术、应用场景三个维度对现有研究进行归纳和比较,深度剖析了神经网络后门攻击产生的原因和危害、攻击的原理和手段以及防御的要点和方法;最后,进一步探讨了神经网络后门攻击所涉及的原理在未来研究上可能带来的积极作用. 展开更多
关键词 深度神经网络 触发器 后门攻击 后门防御 攻防模型
在线阅读 下载PDF
深度神经网络的后门攻击研究进展 被引量:1
6
作者 黄舒心 张全新 +2 位作者 王亚杰 张耀元 李元章 《计算机科学》 CSCD 北大核心 2023年第9期52-61,共10页
近年来,深度神经网络(Deep Neural Networks, DNNs)迅速发展,其应用领域十分广泛,包括汽车自动驾驶、自然语言处理、面部识别等,给人们的生活带来了许多便利。然而,DNNs的发展也埋下了一定的安全隐患。近年来,DNNs已经被证实易受到后门... 近年来,深度神经网络(Deep Neural Networks, DNNs)迅速发展,其应用领域十分广泛,包括汽车自动驾驶、自然语言处理、面部识别等,给人们的生活带来了许多便利。然而,DNNs的发展也埋下了一定的安全隐患。近年来,DNNs已经被证实易受到后门攻击,这主要是由于DNNs本身透明性较低以及可解释性较差,使攻击者可以趁虚而入。通过回顾神经网络后门攻击相关的研究工作,揭示了神经网络应用中潜在的安全与隐私风险,强调了后门领域研究的重要性。首先简要介绍了神经网络后门攻击的威胁模型,然后将神经网络后门攻击分为基于投毒的后门攻击和无投毒的后门攻击两大类,其中基于投毒的后门攻击又可以细分为多个类别;然后对神经网络后门攻击的发展进行了梳理和总结,对现有资源进行了汇总;最后对后门攻击未来的发展趋势进行了展望。 展开更多
关键词 后门攻击 神经网络 机器学习 投毒攻击 非投毒攻击
在线阅读 下载PDF
深度神经网络中的后门攻击与防御技术综述 被引量:2
7
作者 钱汉伟 孙伟松 《计算机科学与探索》 CSCD 北大核心 2023年第5期1038-1048,共11页
神经网络后门攻击旨在将隐藏的后门植入到深度神经网络中,使被攻击的模型在良性测试样本上表现正常,而在带有后门触发器的有毒测试样本上表现异常,如将有毒测试样本的类别预测为攻击者的目标类。对现有攻击和防御方法进行全面的回顾,以... 神经网络后门攻击旨在将隐藏的后门植入到深度神经网络中,使被攻击的模型在良性测试样本上表现正常,而在带有后门触发器的有毒测试样本上表现异常,如将有毒测试样本的类别预测为攻击者的目标类。对现有攻击和防御方法进行全面的回顾,以攻击对象作为主要分类依据,将攻击方法分为数据中毒攻击、物理世界攻击、中毒模型攻击和其他攻击等类别。从攻防对抗的角度对现有后门攻击和防御的技术进行归纳总结,将防御方法分为识别有毒数据、识别中毒模型、过滤攻击数据等类别。从深度学习几何原理、可视化等角度探讨深度神经网络后门缺陷产生的原因,从软件工程、程序分析等角度探讨深度神经网络后门攻击和防御的困难以及未来发展方向。希望为研究者了解深度神经网络后门攻击与防御的研究进展提供帮助,为设计更健壮的深度神经网络提供更多启发。 展开更多
关键词 深度神经网络 后门攻击 后门防御 触发器
在线阅读 下载PDF
基于对比学习的图神经网络后门攻击防御方法 被引量:5
8
作者 陈晋音 熊海洋 +1 位作者 马浩男 郑雅羽 《通信学报》 EI CSCD 北大核心 2023年第4期154-166,共13页
针对现有的后门攻击防御方法难以处理非规则的非结构化的离散的图数据的问题,为了缓解图神经网络后门攻击的威胁,提出了一种基于对比学习的图神经网络后门攻击防御方法(CLB-Defense)。具体来说,基于对比学习无监督训练的对比模型查找可... 针对现有的后门攻击防御方法难以处理非规则的非结构化的离散的图数据的问题,为了缓解图神经网络后门攻击的威胁,提出了一种基于对比学习的图神经网络后门攻击防御方法(CLB-Defense)。具体来说,基于对比学习无监督训练的对比模型查找可疑后门样本,采取图重要性指标以及标签平滑策略去除训练数据集中的扰动,实现对图后门攻击的防御。最终,在4个真实数据集和5主流后门攻击方法上展开防御验证,结果显示CLB-Defense能够平均降低75.66%的攻击成功率(与对比算法相比,改善了54.01%)。 展开更多
关键词 神经网络 后门攻击 鲁棒性 防御 对比学习
在线阅读 下载PDF
深度神经网络的对抗攻击及防御方法综述 被引量:9
9
作者 赵宏 常有康 王伟杰 《计算机科学》 CSCD 北大核心 2022年第S02期662-672,共11页
深度神经网络正在引领人工智能新一轮的发展高潮,在多个领域取得了令人瞩目的成就。然而,有研究指出深度神经网络容易遭受对抗攻击的影响,导致深度神经网络输出错误的结果,其安全性引起了人们极大的关注。文中从深度神经网络安全性的角... 深度神经网络正在引领人工智能新一轮的发展高潮,在多个领域取得了令人瞩目的成就。然而,有研究指出深度神经网络容易遭受对抗攻击的影响,导致深度神经网络输出错误的结果,其安全性引起了人们极大的关注。文中从深度神经网络安全性的角度综述了对抗攻击与防御方法的研究现状。首先,围绕深度神经网络的对抗攻击问题简述了相关概念及存在性解释;其次,从基于梯度的对抗攻击、基于优化的对抗攻击、基于迁移的对抗攻击、基于GAN的对抗攻击和基于决策边界的对抗攻击的角度介绍了对抗攻击方法,分析每种攻击方法的特点;再次,从基于数据预处理、增强深度神经网络模型的鲁棒性和检测对抗样本等3个方面阐述了对抗攻击的防御方法;然后,从语义分割、音频、文本识别、目标检测、人脸识别、强化学习等领域列举了对抗攻击与防御的实例;最后,通过对对抗攻击与防御方法的分析,展望了深度神经网络中对抗攻击和防御的发展趋势。 展开更多
关键词 人工智能 深度神经网络 神经网络安全 对抗攻击 防御方法
在线阅读 下载PDF
深度神经网络结合蚁群算法的躲避攻击多目标对抗方法 被引量:3
10
作者 魏焕新 张宏国 《计算机应用与软件》 北大核心 2020年第11期292-298,共7页
针对深度神经网络在躲避攻击多目标对抗方法中输入的数据易导致机器误解码,提出一种深度神经网络结合蚁群算法的躲避攻击多目标对抗方法。设计一种与变换器和多个模型组成的体系结构,利用变换器生成一个多目标的对抗性样本,利用深度学... 针对深度神经网络在躲避攻击多目标对抗方法中输入的数据易导致机器误解码,提出一种深度神经网络结合蚁群算法的躲避攻击多目标对抗方法。设计一种与变换器和多个模型组成的体系结构,利用变换器生成一个多目标的对抗性样本,利用深度学习训练的分类器对输入值进行分类;引入蚁群算法,利用蚂蚁互相交流学习的正反馈原理保证算法的收敛性和寻优速度;融合两种算法的优势,实现躲避攻击的多目标对抗。实验结果表明,相比其他现有方法,该方法在躲避攻击多目标对抗方面更具优势,实现了100%的攻击成功率。 展开更多
关键词 深度神经网络 躲避攻击 对抗样本 机器学习 蚁群算法 多目标对抗
在线阅读 下载PDF
深度神经网络模型水印研究进展
11
作者 谭景轩 钟楠 +2 位作者 郭钰生 钱振兴 张新鹏 《上海理工大学学报》 CAS CSCD 北大核心 2024年第3期225-242,共18页
随着深度神经网络在诸多领域的成功应用,以神经网络水印为代表的深度模型知识产权保护技术在近年来受到了广泛关注。对现有的深度神经网络模型水印方法进行综述,梳理了目前为了保护模型知识产权而提出的各类水印方案,按照提取水印时所... 随着深度神经网络在诸多领域的成功应用,以神经网络水印为代表的深度模型知识产权保护技术在近年来受到了广泛关注。对现有的深度神经网络模型水印方法进行综述,梳理了目前为了保护模型知识产权而提出的各类水印方案,按照提取水印时所具备的不同条件,将其分为白盒水印、黑盒水印和无盒水印3类方法,并对各类方法按照水印嵌入机制或适用模型对象的不同进行细分,深入分析了各类方法的主要原理、实现手段和发展趋势。然后,对模型水印的攻击方法进行了系统总结和归类,揭示了神经网络水印面对的主要威胁和安全问题。在此基础上,对各类模型水印中的经典方法进行了性能比较和分析,明确了各个方法的优势和不足,帮助研究者根据实际的应用场景选用合适的水印方法,为后续研究提供基础。最后,讨论了当前深度神经网络模型水印面临的挑战,并展望未来可能的研究方向,旨在为相关的研究提供参考。 展开更多
关键词 深度神经网络 知识产权保护 神经网络水印 白盒水印 黑盒水印 无盒水印 水印攻击 模型安全
在线阅读 下载PDF
基于深度神经网络burst特征分析的网站指纹攻击方法 被引量:23
12
作者 马陈城 杜学绘 +1 位作者 曹利峰 吴蓓 《计算机研究与发展》 EI CSCD 北大核心 2020年第4期746-766,共21页
以Tor为代表的匿名网络是一种隐匿用户数据传输行为的通信中介网络.不法分子利用匿名网络从事网络犯罪,对网络监管造成了极大的困难.网站指纹攻击技术是破解匿名通信的可行技术,可用于发现基于匿名网络秘密访问敏感网站的内网用户行为,... 以Tor为代表的匿名网络是一种隐匿用户数据传输行为的通信中介网络.不法分子利用匿名网络从事网络犯罪,对网络监管造成了极大的困难.网站指纹攻击技术是破解匿名通信的可行技术,可用于发现基于匿名网络秘密访问敏感网站的内网用户行为,是网络监管的重要手段.神经网络在网站指纹攻击技术上的应用突破了传统方法的性能瓶颈,但现有的研究未充分考虑根据突发流量(burst)特征等Tor流量特征对神经网络结构进行设计,存在网络过于复杂和分析模块冗余导致特征提取和分析不彻底、运行缓慢等问题.在对Tor流量特征进行研究和分析的基础上,设计了轻便的基于一维卷积网络的burst特征提取和分析模块,提出了基于深度神经网络分析burst特征的网站指纹攻击方法.进一步,针对在开放世界场景中仅使用阈值法简单分析指纹向量的不足,设计了基于随机森林算法的指纹向量分析模型.改进后的模型分类准确率达到了99.87%,在缓解概念漂移、绕过网站指纹攻击防御机制、识别Tor隐藏网站、小样本训练模型和运行速度等方面均有优异的性能表现,提高了网站指纹攻击技术应用到真实网络的可实践性. 展开更多
关键词 网站指纹攻击 深度神经网络 burst特征分析 Tor匿名网络 网络监管
在线阅读 下载PDF
面向深度学习的后门攻击及防御研究综述
13
作者 高梦楠 陈伟 +1 位作者 吴礼发 张伯雷 《软件学报》 北大核心 2025年第7期3271-3305,共35页
深度学习模型是人工智能系统的重要组成部分,被广泛应用于现实多种关键场景.现有研究表明,深度学习的低透明度与弱可解释性使得深度学习模型对扰动敏感.人工智能系统面临多种安全威胁,其中针对深度学习的后门攻击是人工智能系统面临的... 深度学习模型是人工智能系统的重要组成部分,被广泛应用于现实多种关键场景.现有研究表明,深度学习的低透明度与弱可解释性使得深度学习模型对扰动敏感.人工智能系统面临多种安全威胁,其中针对深度学习的后门攻击是人工智能系统面临的重要威胁.为了提高深度学习模型的安全性,全面地介绍计算机视觉、自然语言处理等主流深度学习系统的后门攻击与防御研究进展.首先根据现实中攻击者能力将后门攻击分为全过程可控后门、模型修改后门和仅数据投毒后门.然后根据后门构建方式进行子类划分.接着根据防御策略对象将现有后门防御方法分为基于输入的后门防御与基于模型的后门防御.最后汇总后门攻击常用数据集与评价指标,并总结后门攻击与防御领域存在的问题,在后门攻击的安全应用场景与后门防御的有效性等方面提出建议与展望. 展开更多
关键词 深度学习 后门攻击 后门防御 人工智能安全
在线阅读 下载PDF
基于多模态深度神经网络的应用层DDoS攻击检测模型 被引量:19
14
作者 周奕涛 张斌 刘自豪 《电子学报》 EI CAS CSCD 北大核心 2022年第2期508-512,共5页
为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流... 为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流量与网页日志中提取流量与用户行为深层特征后输入汇聚深度神经网络进行检测.为减少MDL神经网络参数更新时的灾难性遗忘现象,在模型参数更新过程中基于弹性权重保持(Elastic Weight Consolidation,EWC)算法为重要模型参数增加惩罚项,保持对初始训练数据集检测准确率的同时,提升对新数据集的检测性能.最后,基于K-Means算法获得模型初始训练数据集聚类,并筛选出新数据集中聚类外数据进行模型参数更新,防止EWC算法因数据相关性过高而失效.实验表明,所提应用层DDoS检测模型检测准确率可达98.2%,且相对MLP_Whole方法模型参数更新性能较好. 展开更多
关键词 应用层DDoS攻击 攻击检测模型 多模态深度神经网络 弹性权重保持算法 参数更新
在线阅读 下载PDF
深度卷积神经网络图像识别模型对抗鲁棒性技术综述 被引量:28
15
作者 孙浩 陈进 +2 位作者 雷琳 计科峰 匡纲要 《雷达学报(中英文)》 CSCD 北大核心 2021年第4期571-594,共24页
近年来,以卷积神经网络为代表的深度识别模型取得重要突破,不断刷新光学和SAR图像场景分类、目标检测、语义分割与变化检测等多项任务性能水平。然而深度识别模型以统计学习为主要特征,依赖大规模高质量训练数据,只能提供有限的可靠性... 近年来,以卷积神经网络为代表的深度识别模型取得重要突破,不断刷新光学和SAR图像场景分类、目标检测、语义分割与变化检测等多项任务性能水平。然而深度识别模型以统计学习为主要特征,依赖大规模高质量训练数据,只能提供有限的可靠性能保证。深度卷积神经网络图像识别模型很容易被视觉不可感知的微小对抗扰动欺骗,给其在医疗、安防、自动驾驶和军事等安全敏感领域的广泛部署带来巨大隐患。该文首先从信息安全角度分析了基于深度卷积神经网络的图像识别系统潜在安全风险,并重点讨论了投毒攻击和逃避攻击特性及对抗脆弱性成因;其次给出了对抗鲁棒性的基本定义,分别建立对抗学习攻击与防御敌手模型,系统总结了对抗样本攻击、主被动对抗防御、对抗鲁棒性评估技术的研究进展,并结合SAR图像目标识别对抗攻击实例分析了典型方法特性;最后结合团队研究工作,指出存在的开放性问题,为提升深度卷积神经网络图像识别模型在开放、动态、对抗环境中的鲁棒性提供参考。 展开更多
关键词 深度卷积神经网络 SAR图像识别 信息安全 对抗攻击与防御 鲁棒性评估
在线阅读 下载PDF
深度神经网络模型后门植入与检测技术研究综述
16
作者 马铭苑 李虎 +1 位作者 王梓斌 况晓辉 《计算机工程与科学》 CSCD 北大核心 2022年第11期1959-1968,共10页
作为当前人工智能快速发展的代表性技术之一,深度神经网络的应用范围越来越广,由此带来的安全性问题也逐渐受到关注。现有研究主要聚焦于如何高效构造多样化的对抗样本,以实现对深度神经网络模型的欺骗,以及如何检测对抗样本并加固深度... 作为当前人工智能快速发展的代表性技术之一,深度神经网络的应用范围越来越广,由此带来的安全性问题也逐渐受到关注。现有研究主要聚焦于如何高效构造多样化的对抗样本,以实现对深度神经网络模型的欺骗,以及如何检测对抗样本并加固深度神经网络模型。但是,随着深度神经网络模型的开发越来越依赖开源数据集、预训练模型和计算框架等第三方资源,模型被植入后门的风险越来越高。从深度神经网络模型生命周期的各个环节出发,对深度神经网络模型后门植入与检测相关技术进行了归纳总结,对比分析了不同技术的主要特征与适用场景,对相关技术未来的发展方向进行了展望。 展开更多
关键词 深度神经网络 后门植入 后门检测 人工智能
在线阅读 下载PDF
深度神经网络在高铁运行环境识别中的鲁棒性验证
17
作者 高珍 苏宇 +2 位作者 侯潇雪 方沛 张苗苗 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第10期1405-1413,F0002,共10页
改进了DeepTRE的实现,在保留DeepTRE验证能力的前提下大幅降低了DeepTRE的空间复杂度,以适应大规模数据集场景。在高铁运行环境识别场景中评估了改进后的DeepTRE,并与其他主流验证工具DLV和SafeCV对比。实验结果表明,改进后的DeepTRE工... 改进了DeepTRE的实现,在保留DeepTRE验证能力的前提下大幅降低了DeepTRE的空间复杂度,以适应大规模数据集场景。在高铁运行环境识别场景中评估了改进后的DeepTRE,并与其他主流验证工具DLV和SafeCV对比。实验结果表明,改进后的DeepTRE工具的显存占用显著低于原DeepTRE工具,相较于其他神经网络验证工具,改进后的DeepTRE工具在具有较快验证速度的前提下拥有更优异的验证效果。 展开更多
关键词 深度神经网络 鲁棒性 DeepTRE 对抗攻击 目标检测
在线阅读 下载PDF
基于多级度量差值的神经网络后门检测方法 被引量:1
18
作者 刘亦纯 张光华 宿景芳 《信息安全研究》 CSCD 2023年第6期587-592,共6页
深度神经网络在各类任务中都展现出良好的性能,但由于深度学习模型缺乏透明性和不可解释性,在推理阶段触发恶意攻击者设定的后门时模型出现异常行为而导致性能下降.针对上述问题,提出了一种基于多级度量差值的后门检测方案(backdoor det... 深度神经网络在各类任务中都展现出良好的性能,但由于深度学习模型缺乏透明性和不可解释性,在推理阶段触发恶意攻击者设定的后门时模型出现异常行为而导致性能下降.针对上述问题,提出了一种基于多级度量差值的后门检测方案(backdoor detection scheme based on multilevel measurement difference,Mult-Measure).首先对源模型和被恶意注入后门的授权模型对抗攻击生成测试用例;并设置白盒和黑盒2种度量计算测试用例;最后通过统计阈值计算差值判断模型是否被注入后门.实验表明,Mult-Measure在植入特洛伊木马模型的后门攻击场景下,并在多触发器和隐形触发器下评估性能良好,相较近年来已有的检测方案,Mult-Measure具有更好的有效性和稳定性. 展开更多
关键词 神经网络 深度学习 多级度量 特洛伊木马 后门攻击
在线阅读 下载PDF
深度神经网络模型数字水印技术研究进展综述 被引量:8
19
作者 夏道勋 王林娜 +1 位作者 宋允飞 罗星智 《科学技术与工程》 北大核心 2023年第5期1799-1811,共13页
近年来,深度神经网络模型在各种应用领域都取得了巨大的成功,训练先进的深度神经网络模型仍需要大规模的数据集、高昂的算力成本和优异的算法思想,生成的深度神经网络模型成为一种宝贵的资源,也是完成人工智能应用领域某项特定任务的核... 近年来,深度神经网络模型在各种应用领域都取得了巨大的成功,训练先进的深度神经网络模型仍需要大规模的数据集、高昂的算力成本和优异的算法思想,生成的深度神经网络模型成为一种宝贵的资源,也是完成人工智能应用领域某项特定任务的核心算法。因此,深度神经网络模型的安全则变得极其重要,利用数字水印版权保护技术保障模型的安全已经成为人工智能安全领域一个重要的研究方向。为了综述深度神经网络模型数字水印版权保护技术的最新研究进展,首先介绍了深度神经网络模型数字水印技术分类;其次介绍了深度神经网络模型数字水印版权保护技术基础概况;再次归纳总结了深度神经网络模型数字水印版权保护技术的研究方法;最后总结并展望了深度神经网络模型数字水印版权保护领域的研究重点和发展方向。 展开更多
关键词 数字水印 版权保护 深度神经网络模型 深度神经网络攻击和防御
在线阅读 下载PDF
基于一维卷积神经网络的HTTP慢速DoS攻击检测方法 被引量:5
20
作者 陈旖 张美璟 许发见 《计算机应用》 CSCD 北大核心 2020年第10期2973-2979,共7页
为解决HTTP慢速拒绝服务(SHDoS)攻击流量检测在攻击频率变化时出现的准确率降低的问题,提出一种基于一维卷积神经网络(CNN)的SHDoS攻击流量检测方法。首先,该方法在多种攻击频率下对三种类型的SHDoS攻击流量进行报文采样和数据流提取;之... 为解决HTTP慢速拒绝服务(SHDoS)攻击流量检测在攻击频率变化时出现的准确率降低的问题,提出一种基于一维卷积神经网络(CNN)的SHDoS攻击流量检测方法。首先,该方法在多种攻击频率下对三种类型的SHDoS攻击流量进行报文采样和数据流提取;之后,设计了一种数据流转换算法,将采集的攻击数据流转换为一维序列并进行去重;最后,使用一维CNN构建分类模型,该模型通过卷积核来提取序列片段,并从片段中学习攻击样本的局部模式,从而使模型对多种攻击频率的数据流都具备检测能力。实验结果显示,与基于循环神经网络(RNN)、长短期记忆(LSTM)网络及双向长短期记忆(Bi-LSTM)网络构建的分类模型相比,该模型对未知攻击频率的样本同样具有较好的检测能力,在验证集上的检测准确率和精确率分别达到了96.76%和94.13%。结果表明所提方法能够满足对不同攻击频率的SHDoS流量进行检测的需求。 展开更多
关键词 慢速HTTP拒绝服务攻击 恶意流量检测 卷积神经网络 深度学习 流量分类
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部