为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流...为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流量与网页日志中提取流量与用户行为深层特征后输入汇聚深度神经网络进行检测.为减少MDL神经网络参数更新时的灾难性遗忘现象,在模型参数更新过程中基于弹性权重保持(Elastic Weight Consolidation,EWC)算法为重要模型参数增加惩罚项,保持对初始训练数据集检测准确率的同时,提升对新数据集的检测性能.最后,基于K-Means算法获得模型初始训练数据集聚类,并筛选出新数据集中聚类外数据进行模型参数更新,防止EWC算法因数据相关性过高而失效.实验表明,所提应用层DDoS检测模型检测准确率可达98.2%,且相对MLP_Whole方法模型参数更新性能较好.展开更多
深度神经网络在各类任务中都展现出良好的性能,但由于深度学习模型缺乏透明性和不可解释性,在推理阶段触发恶意攻击者设定的后门时模型出现异常行为而导致性能下降.针对上述问题,提出了一种基于多级度量差值的后门检测方案(backdoor det...深度神经网络在各类任务中都展现出良好的性能,但由于深度学习模型缺乏透明性和不可解释性,在推理阶段触发恶意攻击者设定的后门时模型出现异常行为而导致性能下降.针对上述问题,提出了一种基于多级度量差值的后门检测方案(backdoor detection scheme based on multilevel measurement difference,Mult-Measure).首先对源模型和被恶意注入后门的授权模型对抗攻击生成测试用例;并设置白盒和黑盒2种度量计算测试用例;最后通过统计阈值计算差值判断模型是否被注入后门.实验表明,Mult-Measure在植入特洛伊木马模型的后门攻击场景下,并在多触发器和隐形触发器下评估性能良好,相较近年来已有的检测方案,Mult-Measure具有更好的有效性和稳定性.展开更多
文摘为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流量与网页日志中提取流量与用户行为深层特征后输入汇聚深度神经网络进行检测.为减少MDL神经网络参数更新时的灾难性遗忘现象,在模型参数更新过程中基于弹性权重保持(Elastic Weight Consolidation,EWC)算法为重要模型参数增加惩罚项,保持对初始训练数据集检测准确率的同时,提升对新数据集的检测性能.最后,基于K-Means算法获得模型初始训练数据集聚类,并筛选出新数据集中聚类外数据进行模型参数更新,防止EWC算法因数据相关性过高而失效.实验表明,所提应用层DDoS检测模型检测准确率可达98.2%,且相对MLP_Whole方法模型参数更新性能较好.
文摘深度神经网络在各类任务中都展现出良好的性能,但由于深度学习模型缺乏透明性和不可解释性,在推理阶段触发恶意攻击者设定的后门时模型出现异常行为而导致性能下降.针对上述问题,提出了一种基于多级度量差值的后门检测方案(backdoor detection scheme based on multilevel measurement difference,Mult-Measure).首先对源模型和被恶意注入后门的授权模型对抗攻击生成测试用例;并设置白盒和黑盒2种度量计算测试用例;最后通过统计阈值计算差值判断模型是否被注入后门.实验表明,Mult-Measure在植入特洛伊木马模型的后门攻击场景下,并在多触发器和隐形触发器下评估性能良好,相较近年来已有的检测方案,Mult-Measure具有更好的有效性和稳定性.