期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MRNDA:一种基于资源受限片上网络的深度神经网络加速器组播机制研究 被引量:1
1
作者 欧阳一鸣 王奇 +2 位作者 汤飞扬 周武 李建华 《电子学报》 EI CAS CSCD 北大核心 2024年第3期872-884,共13页
片上网络(Network-on-Chip,NoC)在多处理器系统中得到了广泛的应用.近年来,有研究提出了基于NoC的深度神经网络(Deep Neural Network,DNN)加速器.基于NoC的DNN加速器设计利用NoC连接神经元计算设备,能够极大地减少加速器对片外存储的访... 片上网络(Network-on-Chip,NoC)在多处理器系统中得到了广泛的应用.近年来,有研究提出了基于NoC的深度神经网络(Deep Neural Network,DNN)加速器.基于NoC的DNN加速器设计利用NoC连接神经元计算设备,能够极大地减少加速器对片外存储的访问从而减少加速器的分类延迟和功耗.但是,若采用传统的单播NoC,大量的一对多数据包会极大的提高加速器的通信延迟.并且,目前的深度神经网络规模往往非常庞大,而NoC的核心数量是有限的.因此,文中提出了一种针对资源受限的NoC的组播方案.该方案利用有限数量的处理单元(Processor Element,PE)来计算大型的DNN,并且利用特殊的树形组播加速网络来减少加速器的通信延迟.仿真结果表明,和基准情况相比,本文提出的组播机制使加速器的分类延迟最高降低了86.7%,通信延迟最高降低了88.8%,而它的路由器面积和功耗仅占基准路由器的9.5%和10.3%. 展开更多
关键词 片上网络 深度神经网络加速器 组播 路由器架构 多物理网络
在线阅读 下载PDF
面向多模型工作负载的弹性计算加速器架构研究
2
作者 张军 王兴宾 苏玉兰 《高技术通讯》 2025年第7期698-710,共13页
针对多模型工作负载在深度神经网络(deep neural network,DNN)加速器上部署时服务质量下降的问题,本文提出新的加速器体系结构EnsBooster,该架构能够为多模型的高效推理提供经济高效的并行执行模式。首先,设计了弹性脉动阵列,将较大的... 针对多模型工作负载在深度神经网络(deep neural network,DNN)加速器上部署时服务质量下降的问题,本文提出新的加速器体系结构EnsBooster,该架构能够为多模型的高效推理提供经济高效的并行执行模式。首先,设计了弹性脉动阵列,将较大的脉动阵列划分为多个较小的脉动子阵列,以满足多模型并行执行的灵活性和可扩展性需求。其次,提出了时空复用资源分配策略,充分利用时空共享来提高底层计算资源的使用效率。最后,提出分层调度机制,在粗粒度层面,采用提前退出调度来降低多模型推理的计算负担;在细粒度层面,采用抢占调度机制利用多模型的互补性和数据局部性抢占空闲计算资源,最大限度地提高硬件资源和带宽利用率。使用一组不同的多模型工作负载基准进行的评估表明,EnsBooster架构在吞吐量、能耗降低方面有显著提高。 展开更多
关键词 深度神经网络加速器 集成学习 多模型工作负载 弹性计算 脉动阵列 抢占调度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部