The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and...The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and lab-mixed duplicates. A new "mix-confined" test is developed and four new parameters for this test are proposed. Correlation coefficients with rut depths and coefficients of variation (sensitivity) are compared between the four new and two existing parameters. Some parameters are recommended to be used for the newly developed test. The results show that, newly developed test can capture the changes of permanent deformation of asphalt mixtures. Only one new parameter (D1 of Stephen Price model) and one existing parameter (flow number, Fn ) have strong correlations with rut depths of asphalt pavements (R2 greater than 0.7) and have relative small sensitivity (coefficient of variation, COV, less than 30%). For polymer modified asphalt mixtures, the parameter D1 rather than Fn should be used. These findings can be used to check the permanent deformation of asphalt mixture during the mix design.展开更多
The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the typ...The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the type A and type B systems were carried out to investigate the pull-out capacities and the slope stability reinforcement efficiency in soil and rock slopes.The results of the pull-out tests show the mobilized shear force and load transfer characteristics with respect to soil depth.The load-displacement relationship was examined for both type A and type B systems.Slope stability analyses were carried out to study the relationships between soil and nail reinforcement and bending stiffness as well as combined axial tension and shear forces.Factors of safety were calculated in relation to the number of nails and their outside diameters.Both soil and rock slopes were included in this evaluation.展开更多
Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not...Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not well investigated. In this work, a number of field pullout tests of pressure grouted soil nails were conducted to estimate the pullout resistance of soil nails. The effective bond lengths of field soil nails were accurately controlled by a new grouting packer system. Typical field test results and the related comparison with typical laboratory test results reveal that the apparent coefficient of friction (ACF) decreases with the increase of overburden soil pressure when grouting pressure is constant, but increases almost linearly with the increase of grouting pressure when overburden pressure (soil depth) is unchanged. Water contents of soil samples at soil nail surfaces show obvious reductions compared with the results of soil samples from drillholes. After soil nails were completely pulled out of the ground, surface conditions of the soil nails and surrounding soil were examined. It is found that the water content values of the soil at the soil/nail interfaces decrease substantially compared with those of soil samples extracted from drillholes. In addition, all soil nails expand significantly in the diametrical direction after being pulled out of ground, indicating that the pressurized cement grout compacts the soil and penetrates into soil voids, leading to a corresponding shift of failure surface into surrounding soil mass significantly.展开更多
文摘介绍铁路路基动态变形模量理论计算公式的推导及动态变形模量的测试原理,采用有限元软件模拟动态变形模量的测试过程,分析承载板与土体接触压力、路基动态变形模量的影响因素,并计算动态变形模量的有效测试深度.结果表明:在承载板中心一定范围内,接触压力模拟结果较理论计算值大;土体的动弹性模量对接触压力影响很小,可以忽略;路基动态变形模量测试冲击荷载作用下,土体只发生弹性变形;动态变形模量与土体动弹性模量呈线性关系,路基动态变形模量的模拟结果大于理论计算值;土体的泊松比对动态变形模量影响较小;动态变形模量有效测试深度建议取0.5~0.6 m.
基金Project(08Y038) supported by Jiangsu Transportation Engineering Construction Bureau,China
文摘The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and lab-mixed duplicates. A new "mix-confined" test is developed and four new parameters for this test are proposed. Correlation coefficients with rut depths and coefficients of variation (sensitivity) are compared between the four new and two existing parameters. Some parameters are recommended to be used for the newly developed test. The results show that, newly developed test can capture the changes of permanent deformation of asphalt mixtures. Only one new parameter (D1 of Stephen Price model) and one existing parameter (flow number, Fn ) have strong correlations with rut depths of asphalt pavements (R2 greater than 0.7) and have relative small sensitivity (coefficient of variation, COV, less than 30%). For polymer modified asphalt mixtures, the parameter D1 rather than Fn should be used. These findings can be used to check the permanent deformation of asphalt mixture during the mix design.
文摘The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the type A and type B systems were carried out to investigate the pull-out capacities and the slope stability reinforcement efficiency in soil and rock slopes.The results of the pull-out tests show the mobilized shear force and load transfer characteristics with respect to soil depth.The load-displacement relationship was examined for both type A and type B systems.Slope stability analyses were carried out to study the relationships between soil and nail reinforcement and bending stiffness as well as combined axial tension and shear forces.Factors of safety were calculated in relation to the number of nails and their outside diameters.Both soil and rock slopes were included in this evaluation.
基金Foundation item: Project(NTF 12015) supported by the Scientific Research Foundation for Talent of Shantou University, China Project(PolyU 5320107E) supported by the Research Grants Committee General Research Fund, China
文摘Pullout resistance of a soil nail is a critical parameter in design and analysis for geotechnical engineers. Due to the complexity of field conditions, the pullout behaviour of cement grouted soil nail in field is not well investigated. In this work, a number of field pullout tests of pressure grouted soil nails were conducted to estimate the pullout resistance of soil nails. The effective bond lengths of field soil nails were accurately controlled by a new grouting packer system. Typical field test results and the related comparison with typical laboratory test results reveal that the apparent coefficient of friction (ACF) decreases with the increase of overburden soil pressure when grouting pressure is constant, but increases almost linearly with the increase of grouting pressure when overburden pressure (soil depth) is unchanged. Water contents of soil samples at soil nail surfaces show obvious reductions compared with the results of soil samples from drillholes. After soil nails were completely pulled out of the ground, surface conditions of the soil nails and surrounding soil were examined. It is found that the water content values of the soil at the soil/nail interfaces decrease substantially compared with those of soil samples extracted from drillholes. In addition, all soil nails expand significantly in the diametrical direction after being pulled out of ground, indicating that the pressurized cement grout compacts the soil and penetrates into soil voids, leading to a corresponding shift of failure surface into surrounding soil mass significantly.