期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于深度注意力网络的课堂教学视频中学生表情识别与智能教学评估 被引量:20
1
作者 于婉莹 梁美玉 +2 位作者 王笑笑 陈徵 曹晓雯 《计算机应用》 CSCD 北大核心 2022年第3期743-749,共7页
为了解决复杂课堂场景下学生表情识别的遮挡的问题,同时发挥深度学习在智能教学评估应用上的优势,提出了一种基于深度注意力网络的课堂教学视频中学生表情识别模型与智能教学评估算法。构建了课堂教学视频库、表情库和行为库,利用裁剪... 为了解决复杂课堂场景下学生表情识别的遮挡的问题,同时发挥深度学习在智能教学评估应用上的优势,提出了一种基于深度注意力网络的课堂教学视频中学生表情识别模型与智能教学评估算法。构建了课堂教学视频库、表情库和行为库,利用裁剪和遮挡策略生成多路人脸图像,在此基础上构建了多路深度注意力网络,并通过自注意力机制为多路网络分配不同权重。通过约束损失函数限制各路权重的分配,将人脸图像的全局特征表示为每个支路的特征乘上注意力权重的和除以所有支路的注意力权重之和,并基于学习到的人脸全局特征进行学生课堂表情分类,实现遮挡情况下学生人脸表情识别。提出了融合课堂学生表情和行为状态的智能教学评估算法,实现了课堂教学视频中学生表情识别与智能教学评估。在公开数据集FERplus与自建课堂教学视频数据集上进行实验对比与分析,验证了提出的课堂教学视频中学生表情识别模型能够达到87.34%的准确率,且提出的融合课堂学生表情和行为状态的智能教学评估算法在课堂教学视频数据集上也取得优秀的性能。 展开更多
关键词 深度学习 深度注意力网络 表情识别 智能教学评估 课堂教学视频
在线阅读 下载PDF
深度度量注意力混合模型表情识别方法
2
作者 姚丽莎 《计算机工程与应用》 北大核心 2025年第7期245-254,共10页
深度学习网络在人脸表情识别中已广泛采用,但因表情图像复杂多变,受光照、个体差异等各个因素的影响,现有方法的识别效果有待提高。为了提高深度学习网络的表达能力,在深度学习网络中,结合面部关键区域的位置特征,提出融合位置信息的深... 深度学习网络在人脸表情识别中已广泛采用,但因表情图像复杂多变,受光照、个体差异等各个因素的影响,现有方法的识别效果有待提高。为了提高深度学习网络的表达能力,在深度学习网络中,结合面部关键区域的位置特征,提出融合位置信息的深层注意力反馈机制卷积神经网络模型。同时,由于表情特征的类间差异小,为了提高分类器的分类学习能力,引入度量学习方法增强特征的判别性,使同类之间的距离减小,异类之间的距离加大。通过度量学习将面部表情图像的特征映射到具有表情判别性的新的特征空间中,由此判断各表情样本的表情类别。对原图进行人脸检测,确定人脸裁剪出人脸关键区域,去除头发、背景等因素的干扰;通过深层注意力反馈机制的CNN模型对人脸关键区域进行特征学习,学习获得面部表情深度特征,之后引入判别性度量学习方法,通过度量矩阵将特征向量映射为新的学习后的特征向量;将提取的样本表情特征送入全连接层并通过Softmax分类器识别划分到预先定义好的7种基本表情。在CK+和RAF-DB数据库的实验表明,该方法取得了98.69%和87.68%的平均识别率,提高了分类器的分类学习能力。 展开更多
关键词 深度注意力 表情识别 卷积神经网络 度量学习
在线阅读 下载PDF
基于自注意力深度学习的硬件代码缺陷定位方法
3
作者 刘振磊 胡健 《计算机学报》 北大核心 2025年第10期2508-2521,共14页
硬件代码缺陷定位是实现硬件设计可靠性、降低设计开发成本和提高硬件设计质量的关键环节。然而,现有缺陷定位方法存在输出与执行信息不匹配、代码覆盖矩阵语义信息不足、可疑值计算方法过于简单等问题,导致缺陷定位精度受限。为了解决... 硬件代码缺陷定位是实现硬件设计可靠性、降低设计开发成本和提高硬件设计质量的关键环节。然而,现有缺陷定位方法存在输出与执行信息不匹配、代码覆盖矩阵语义信息不足、可疑值计算方法过于简单等问题,导致缺陷定位精度受限。为了解决这些问题,我们提出一种基于自注意力深度学习的硬件代码缺陷定位方法。该方法利用VCD(Value Change Dump)对比技术,匹配特定时钟周期内硬件程序的仿真结果与语句覆盖信息,构建精准的覆盖矩阵。其次,通过动态切片技术增强语义信息,保留与缺陷相关的语句,缩小代码搜索范围。最后,使用自注意力深度神经网络学习语句与缺陷之间的复杂映射关系,计算每个语句的可疑值,实现高精度的硬件代码缺陷定位。实验结果表明,该方法在缺陷定位效果上优于最新的缺陷定位方法。在Top-1指标下,本文方法的缺陷定位有效性比最新的缺陷定位方法增长了50%至200%;在MFR指标下,本文方法的缺陷定位有效性比最新的缺陷定位方法的有效性下降了51%至59%,表明该方法能更快更精确地识别缺陷位置,从而有效提高硬件设计的验证效率。 展开更多
关键词 缺陷定位 注意力深度学习 程序切片 覆盖矩阵 可疑值
在线阅读 下载PDF
专注智能油藏储量预测的深度时空注意力模型 被引量:5
4
作者 李宗民 李亚传 +3 位作者 赫俊民 张益政 姚纯纯 刘玉杰 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期77-82,共6页
现有油藏储量预测方法的精度远不能满足实际应用的需求。受循环神经网络和注意力机制的启发,提出一种专注智能油藏储量预测的深度时空注意力模型。该模型通过时间注意力模型来捕获输入数据之间的关键信息,空间注意力模型捕获隐藏状态之... 现有油藏储量预测方法的精度远不能满足实际应用的需求。受循环神经网络和注意力机制的启发,提出一种专注智能油藏储量预测的深度时空注意力模型。该模型通过时间注意力模型来捕获输入数据之间的关键信息,空间注意力模型捕获隐藏状态之间的关系紧密程度,能够缓解数据波动对预测结果的不利影响,从而大幅减小预测误差。结果表明,相比传统方法和已有的深度学习方法,该模型预测精度有显著提高,为今后油藏储量预测提供一种更优的选择。 展开更多
关键词 油藏储量预测 循环神经网络 注意力机制 深度时空注意力模型
在线阅读 下载PDF
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:3
5
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
多尺度残差注意力的高速铁路OFDM信道估计 被引量:3
6
作者 陈永 蒋丰源 詹芝贤 《电子科技大学学报》 EI CAS CSCD 北大核心 2023年第4期512-522,共11页
针对高速铁路正交频分复用(OFDM)通信系统在高速移动场景下,难以准确对快时变信道状态信息进行估计的问题,提出了一种基于多尺度残差注意力网络的高速铁路OFDM信道估计方法。首先,设计多尺度信道特征提取结构,对低分辨率信道矩阵采用多... 针对高速铁路正交频分复用(OFDM)通信系统在高速移动场景下,难以准确对快时变信道状态信息进行估计的问题,提出了一种基于多尺度残差注意力网络的高速铁路OFDM信道估计方法。首先,设计多尺度信道特征提取结构,对低分辨率信道矩阵采用多尺度多维特征提取,增强了信道不同尺度信息的提取能力。然后,构建残差注意力级联深度网络进行信道特征重构映射,将局部残差反馈结合注意力机制促进深层特征的融合和利用,提升OFDM信道矩阵的重构映射能力。最后,使用子像素卷积重构生成高分辨率信道矩阵,完成信道估计。通过频域和时域信道估计测试分析表明:在低速及高速铁路场景下,该方法与其他方法相比,信道估计的精度和复杂度等客观性评价指标均优于比较算法,能够满足OFDM信道估计的要求。 展开更多
关键词 信道估计 深度残差注意力 多尺度卷积神经网络 正交频分复用系统 超分辨率重构
在线阅读 下载PDF
DeepSeek模型分析及其在AI辅助蛋白质工程中的应用 被引量:1
7
作者 李明辰 钟博子韬 +6 位作者 余元玺 姜帆 张良 谭扬 虞慧群 范贵生 洪亮 《合成生物学》 北大核心 2025年第3期636-650,共15页
2025年年初,杭州深度求索人工智能基础技术研究有限公司发布并开源了其自主研发的DeepSeek-R1对话大模型。该模型具备极低的推理成本和出色的思维链推理能力,在多种任务上能够媲美甚至超越闭源的GPT-4o和o1模型,引发了国际社会的高度关... 2025年年初,杭州深度求索人工智能基础技术研究有限公司发布并开源了其自主研发的DeepSeek-R1对话大模型。该模型具备极低的推理成本和出色的思维链推理能力,在多种任务上能够媲美甚至超越闭源的GPT-4o和o1模型,引发了国际社会的高度关注。此外,DeepSeek模型在中文对话上的优异表现以及免费商用的策略,在国内引发了部署和使用的热潮,推动了人工智能技术的普惠与发展。本文围绕DeepSeek模型的架构设计、训练方法与推理机制进行系统性分析,探讨其核心技术在AI蛋白质研究中的迁移潜力与应用前景。DeepSeek模型融合了多项自主创新的前沿技术,包括多头潜在注意力机制、混合专家网络及其负载均衡、低精度训练等,显著降低了Transformer模型的训练和推理成本。尽管DeepSeek模型原生设计用于人类语言的理解与生成,但其优化技术对同样基于Transformer模型的蛋白质预训练语言模型具有重要的参考价值。借助DeepSeek所采用的关键技术,蛋白质语言模型在训练成本、推理成本等方面有望得到显著降低。 展开更多
关键词 大语言模型 AI蛋白质 深度注意力变换网络 蛋白质语言模型 深度学习
在线阅读 下载PDF
基于生成对抗网络的文本转图像研究 被引量:4
8
作者 李校林 高雨薇 付国庆 《计算机应用与软件》 北大核心 2024年第3期188-193,219,共7页
近几年,生成对抗网络(Generative Adversarial Network, GAN)在文本转图像中已经取得了显著成果,但是当生成复杂图像时,一些重要的细粒度信息常常会丢失,包括图像边缘模糊、局部纹理不清晰等问题。为了解决上述问题,在堆叠式生成对抗网... 近几年,生成对抗网络(Generative Adversarial Network, GAN)在文本转图像中已经取得了显著成果,但是当生成复杂图像时,一些重要的细粒度信息常常会丢失,包括图像边缘模糊、局部纹理不清晰等问题。为了解决上述问题,在堆叠式生成对抗网络(Stack GAN)基础上,该文提出一种基于深度注意力的堆叠式生成对抗网络模型(Deep Attention Stack GAN, DAS-GAN),模型第一个阶段生成图像的基本轮廓和颜色,第二个阶段部分外观和颜色的补充和校正,最后一个阶段细化图像的纹理细节。通过在CUB数据集上实验的初始得分发现,DAS-GAN相比StackGAN++和AttnGAN分别提高了0.296和0.078,从而证明了该模型的有效性。 展开更多
关键词 生成对抗网络 深度学习 文本转图像 深度注意力 DAS-GAN
在线阅读 下载PDF
视频识别深度学习网络综述 被引量:9
9
作者 钱文祥 衣杨 《计算机科学》 CSCD 北大核心 2022年第S02期341-350,共10页
视频识别是计算机视觉领域中最重要的任务之一,受到了研究者的广泛关注。视频识别指从视频片段中提取特征,并依据特征识别视频动作。相比于静态图片,视频的各帧间存在较大的关联性。如何高效地使用来自时空等不同维度的特征信息准确地... 视频识别是计算机视觉领域中最重要的任务之一,受到了研究者的广泛关注。视频识别指从视频片段中提取特征,并依据特征识别视频动作。相比于静态图片,视频的各帧间存在较大的关联性。如何高效地使用来自时空等不同维度的特征信息准确地识别视频,是当前研究的重点。以视频识别技术为研究对象,首先介绍了视频识别研究的背景信息及常用数据集。然后,详细地梳理了视频识别方法的演变过程;回顾了基于时空兴趣点、密集轨迹、改进的密集轨迹等传统的视频识别方法,以及近年来提出的可用于视频识别的深度学习网络框架。其中,分别介绍了基于2D卷积神经网络的视频识别框架、基于3D卷积神经网络的视频框架、伪3D卷积神经网络,以及基于Transformer结构的网络,介绍了这些框架的演变,并总结了它们的实现细节及特点;评测了各网络在不同视频识别数据集上的表现情况,分析了各网络的适用场景。最后,展望了视频识别网络框架未来的研究趋势。视频识别任务可以自动、高效地识别出视频所属的类别,基于深度学习的视频识别具有广泛的实用价值。 展开更多
关键词 视频识别 改进的密集轨迹 深度学习 双流网络 卷积神经网络 深度注意力网络
在线阅读 下载PDF
A Study on Short Text Matching Method Based on KS-BERT Algorithm
10
作者 YANG Hao-wen SUN Mei-feng 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期164-173,共10页
To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the i... To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the input text,and then sent the expanded text to both the context encoder BERT and the structure encoder GAT to capture the contextual relationship features and structural features of the input text.Finally,the match was determined based on the fusion result of the two features.Experiment results based on the public datasets BQ_corpus and LCQMC showed that KS-BERT outperforms advanced models such as ERNIE 2.0.This Study showed that knowledge enhancement and structure enhancement are two effective ways to improve BERT in short text matching.In BQ_corpus,ACC was improved by 0.2%and 0.3%,respectively,while in LCQMC,ACC was improved by 0.4%and 0.9%,respectively. 展开更多
关键词 Deep learning Short text matching Graph attention network Knowledge enhancement
在线阅读 下载PDF
交叉口多时段控制输入源优化研究
11
作者 徐琛 董德存 欧冬秀 《计算机工程与应用》 CSCD 北大核心 2021年第17期230-236,共7页
为了克服多时段控制模型数据输入源连续型数据离散化选取的随意性与经验性,提出一种基于传感网与人工智能理论相结合的交叉口多时段控制深度注意力递归网络输入源选取优化方法。利用Synchro与Sumo仿真评价功能模块对数据输入源进行标准... 为了克服多时段控制模型数据输入源连续型数据离散化选取的随意性与经验性,提出一种基于传感网与人工智能理论相结合的交叉口多时段控制深度注意力递归网络输入源选取优化方法。利用Synchro与Sumo仿真评价功能模块对数据输入源进行标准化处理。以已标记好的控制方案中起始时间等关键属性作为模型输入,同时以最优数据输入源选取点为数据输出构建模型。通过对整个模型输入层、中间层、输出层和优化方法进行仿真实现,并以某城市实际交通流量数据为测试数据进行评价对比分析。结果表明,该创新模型与传统50%位、80%位取值法相比,信号配时方案更加精准高效,交叉口全天总延误时间有效降低。 展开更多
关键词 传感网 交通信号控制 多时段控制 深度注意力机制 数据输入
在线阅读 下载PDF
基于改进LSTM的儿童语音情感识别模型 被引量:11
12
作者 余莉萍 梁镇麟 梁瑞宇 《计算机工程》 CAS CSCD 北大核心 2020年第6期40-49,共10页
为实现不同儿童情感需求状态下帧级语音特征的有效获取,建立一种基于改进长短时记忆(LSTM)网络的儿童语音情感识别模型。采用帧级语音特征代替传统统计特征以保留原始语音中的时序关系,通过引入注意力机制将传统遗忘门和输入门转换为注... 为实现不同儿童情感需求状态下帧级语音特征的有效获取,建立一种基于改进长短时记忆(LSTM)网络的儿童语音情感识别模型。采用帧级语音特征代替传统统计特征以保留原始语音中的时序关系,通过引入注意力机制将传统遗忘门和输入门转换为注意力门,并根据自定义的深度策略计算得到深度注意力门,从而提高语音情感识别性能。实验结果表明,在Fau Aibo儿童情感数据语料库及婴儿哭声情感需求数据库上,该模型在召回率和F1分数上相比基于传统LSTM的识别模型分别提高了3.14%、5.50%和1.84%、5.49%,在CASIA中文情感数据库上,其相比基于传统LSTM和GRU的识别模型训练时间更短、儿童语音情感识别率更高。 展开更多
关键词 儿童情感 时序关系 帧级语音特征 深度注意力 长短时记忆网络
在线阅读 下载PDF
Z世代阅读特点、成因及引导策略初探——基于代际研究的视角 被引量:6
13
作者 王珺 《中国出版》 CSSCI 北大核心 2021年第15期61-63,共3页
从代际研究的角度看,Z世代是一个全球性的代际现象,不同的成长环境造就了不同的阅读习惯、阅读方式。从Z世代的成长背景出发,分析了Z世代的阅读特点及成因,希望以此研究,探索更多有效途径,培育青少年对纸质书的兴趣,养成沉浸式阅读的习... 从代际研究的角度看,Z世代是一个全球性的代际现象,不同的成长环境造就了不同的阅读习惯、阅读方式。从Z世代的成长背景出发,分析了Z世代的阅读特点及成因,希望以此研究,探索更多有效途径,培育青少年对纸质书的兴趣,养成沉浸式阅读的习惯,形成良好的思维品质,引导他们亲近经典,既有能力应对互联网世界的广博,也有能力体验并享受传统阅读世界的深邃。 展开更多
关键词 Z世代 浅阅读” 超级注意力 深度注意力
在线阅读 下载PDF
基于结构感知混合编码模型的代码注释生成方法 被引量:3
14
作者 蔡瑞初 张盛强 许柏炎 《计算机工程》 CAS CSCD 北大核心 2023年第2期61-69,共9页
代码注释能够提高程序代码的可读性,从而提升软件开发效率并降低成本。现有的代码注释生成方法将程序代码的序列表示或者抽象语法树表示输入到不同结构的编码器网络,无法融合程序代码不同抽象形式的结构特性,导致生成的注释可读性较差... 代码注释能够提高程序代码的可读性,从而提升软件开发效率并降低成本。现有的代码注释生成方法将程序代码的序列表示或者抽象语法树表示输入到不同结构的编码器网络,无法融合程序代码不同抽象形式的结构特性,导致生成的注释可读性较差。构建一种结构感知的混合编码模型,同时考虑程序代码的序列表示和结构表示,通过序列编码层和图编码层分别捕获程序代码的序列信息和语法结构信息,并利用聚合编码过程将两类信息融合至解码器。设计一种结构感知的图注意力网络,通过将程序代码的语法结构的层次和类型信息嵌入图注意力网络的学习参数,有效提升了混合编码模型对程序代码的复杂语法结构的学习能力。实验结果表明,与SiT基准模型相比,混合编码模型在Python和Java数据集上的BLEU、ROUGE-L、METEOR得分分别提高了2.68%、1.47%、3.82%和2.51%、2.24%、3.55%,能生成更准确的代码注释。 展开更多
关键词 代码注释生成 混合编码模型 注意力网络 深度注意力网络 自然语言处理
在线阅读 下载PDF
基于ViT的细粒度图像分类 被引量:9
15
作者 李佳盈 蒋文婷 +1 位作者 杨林 罗铁坚 《计算机工程与设计》 北大核心 2023年第3期916-921,共6页
为解决细粒度图像分类任务存在类内差异性和类间相似性大的问题,提出一种基于Vision Transformer(ViT)的细粒度图像分类方法。采取ViT作为特征编码网络,获取图像的全局特征表示;设计多级区域选择模块,捕捉细微的具有可判别性的层级化信... 为解决细粒度图像分类任务存在类内差异性和类间相似性大的问题,提出一种基于Vision Transformer(ViT)的细粒度图像分类方法。采取ViT作为特征编码网络,获取图像的全局特征表示;设计多级区域选择模块,捕捉细微的具有可判别性的层级化信息;利用一个简单且有效的中心损失函数,缩短深层特征与相应类中心在特征空间中的距离。在图像级标签的监督下,实现端到端的训练。结果在CUB-200-2011、NABirds以及Stanford Cars数据集上分别达到90.1%、90.2%和93.7%的分类准确率,超越当前最优算法。 展开更多
关键词 细粒度图像分类 深度注意力变换网络 注意力机制 中心损失 卷积神经网络 特征表示 特征空间
在线阅读 下载PDF
自监督学习用于3D真实场景问答
16
作者 李祥 范志广 +2 位作者 林楠 曹仰杰 李学相 《计算机科学》 CSCD 北大核心 2023年第9期220-226,共7页
近年来,视觉问答逐渐成为计算机视觉领域的研究热点之一。目前大多数研究是围绕2D图像的问答,但2D图像存在由视点改变、遮挡和重投影引入的空间模糊性。现实生活中,人机交互的场景往往是3D的,研究3D问答更具实际应用价值。已有的3D问答... 近年来,视觉问答逐渐成为计算机视觉领域的研究热点之一。目前大多数研究是围绕2D图像的问答,但2D图像存在由视点改变、遮挡和重投影引入的空间模糊性。现实生活中,人机交互的场景往往是3D的,研究3D问答更具实际应用价值。已有的3D问答算法能感知3D对象以及它们的空间关系,并能回答意义复杂的问题。但是,由点云组成的3D场景和问题属于两种模态的数据,这两种模态数据之间存在明显的差异,难以对齐,两者潜在的相关特征容易被忽略。针对这一问题,提出了一种基于自监督学习的3D真实场景问答方法。该方法首次在3D问答模型中引入对比学习,通过3D跨模态对比学习对齐3D场景和问题,缩小两种模态的异构差距,挖掘两者的相关特征。此外,将深度交互注意力网络用于处理3D场景和问题,对3D场景中的对象和问题中的关键词做充分的交互。在ScanQA数据集上进行的大量实验表明,3DSSQA在EM@1这个主要指标上的准确度达到了24.3%,超过了目前最先进的模型。 展开更多
关键词 3D问答 自监督学习 对比学习 点云 深度交互注意力
在线阅读 下载PDF
面向电网设备故障报告的半监督命名实体识别方法 被引量:9
17
作者 杨祎 崔其会 丁奕齐 《计算机应用》 CSCD 北大核心 2021年第S02期41-47,共7页
针对电网领域命名实体识别(NER)对人工标注的依赖问题,提出了一种面向电网设备故障报告的半监督命名实体识别方法 Semi-supervised PGTBC。首先使用基于多头自注意力机制的深度自注意力网络进行特征抽取,然后结合双向长短记忆神经网络(B... 针对电网领域命名实体识别(NER)对人工标注的依赖问题,提出了一种面向电网设备故障报告的半监督命名实体识别方法 Semi-supervised PGTBC。首先使用基于多头自注意力机制的深度自注意力网络进行特征抽取,然后结合双向长短记忆神经网络(BiLSTM)和条件随机场模型(CRF)建立电网领域命名实体识别模型,最后基于半监督思想,引入基于深度自注意力网络的实体类别综合描述相似度计算,结合PGTBC的置信度作为半监督阈值筛选依据,减少对电网设备故障报告实体标注的依赖。数据集使用来源于1 256篇的电网故障报告的10 301条标注样本数和30 829条无标注样本数。在有标注电网领域数据上的实验结果表明,基于PGTBC模型的预测F1为96.43%,相对于传统的BiLSTM-CRF模型提高了7.09个百分点。在无标注样本上,半监督方法 Semi-supervised PGTBC取得了93.16%的F1,相对半监督CRF模型的F1提高了23.4个百分点,并对无标注样本进行了自动标注,识别出1 661条新实体,有效减少电网设备故障报告命名实体任务对人工标注的依赖。 展开更多
关键词 命名实体识别 电网设备 半监督学习 多头自注意力机制 深度注意力网络 双向长短记忆神经网络
在线阅读 下载PDF
A survey of deep learning-based visual question answering 被引量:1
18
作者 HUANG Tong-yuan YANG Yu-ling YANG Xue-jiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期728-746,共19页
With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significanc... With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected. 展开更多
关键词 computer vision natural language processing visual question answering deep learning attention mechanism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部