基于深度学习进行信号自动调制识别在分类精度、可迁移性等方面普遍优于传统方法,引起广泛关注。但是,当前方法多数针对单信号样本进行识别,无法适用于混叠信号识别场景。针对该问题,对混叠信号调制识别方法进行了研究,结合长短期记忆(l...基于深度学习进行信号自动调制识别在分类精度、可迁移性等方面普遍优于传统方法,引起广泛关注。但是,当前方法多数针对单信号样本进行识别,无法适用于混叠信号识别场景。针对该问题,对混叠信号调制识别方法进行了研究,结合长短期记忆(long short term memory,LSTM)网络和深度残差收缩网络(deep residual shrinkage network,DRSN),设计了时序深度残差收缩网络模型,其中包含残差模块、收缩模块和LSTM模块。残差模块和收缩模块负责提取混叠信号中的显著信息并自适应生成决策阈值,LSTM模块用于提取混叠信号中的时序隐含特征。三者结合可以有效提高混叠信号的识别精度。公开和实测数据集测试结果表明,所提方法识别精度优于5种典型方法,在高信噪比下的平均识别分类准确率可以达到92.7%;21种混叠信号中有12种识别准确率接近100%。展开更多
针对语音情感识别任务中说话者的差异性,计算谱特征的一阶差分、二阶差分组成三通道的特征集输入二维网络。结合卷积神经网络、双向长短时记忆网络以及注意力机制建立基线模型,引入深度残差收缩网络分配二维网络中的通道权重,进一步提...针对语音情感识别任务中说话者的差异性,计算谱特征的一阶差分、二阶差分组成三通道的特征集输入二维网络。结合卷积神经网络、双向长短时记忆网络以及注意力机制建立基线模型,引入深度残差收缩网络分配二维网络中的通道权重,进一步提高语音情感识别的精度。为提升模型的学习效果,采取特征层融合(特征向量并行和特征向量拼接两种方式)和决策层融合(平均得分和最大得分两种方式)等不同信息融合机制。结果表明:(1)特征层融合中的特征向量并行策略是更有效的方式;(2)本文提出模型在CASIA和EMO⁃DB数据库下分别取得了84.93%和86.83%的未加权平均召回率(Unweighted average recall,UAR),相较于基线模型,引入深度残差收缩网络后的模型在CASIA和EMO⁃DB数据库上的未加权召回率分别提高5.3%和6.2%。展开更多
文摘基于深度学习进行信号自动调制识别在分类精度、可迁移性等方面普遍优于传统方法,引起广泛关注。但是,当前方法多数针对单信号样本进行识别,无法适用于混叠信号识别场景。针对该问题,对混叠信号调制识别方法进行了研究,结合长短期记忆(long short term memory,LSTM)网络和深度残差收缩网络(deep residual shrinkage network,DRSN),设计了时序深度残差收缩网络模型,其中包含残差模块、收缩模块和LSTM模块。残差模块和收缩模块负责提取混叠信号中的显著信息并自适应生成决策阈值,LSTM模块用于提取混叠信号中的时序隐含特征。三者结合可以有效提高混叠信号的识别精度。公开和实测数据集测试结果表明,所提方法识别精度优于5种典型方法,在高信噪比下的平均识别分类准确率可以达到92.7%;21种混叠信号中有12种识别准确率接近100%。
文摘针对语音情感识别任务中说话者的差异性,计算谱特征的一阶差分、二阶差分组成三通道的特征集输入二维网络。结合卷积神经网络、双向长短时记忆网络以及注意力机制建立基线模型,引入深度残差收缩网络分配二维网络中的通道权重,进一步提高语音情感识别的精度。为提升模型的学习效果,采取特征层融合(特征向量并行和特征向量拼接两种方式)和决策层融合(平均得分和最大得分两种方式)等不同信息融合机制。结果表明:(1)特征层融合中的特征向量并行策略是更有效的方式;(2)本文提出模型在CASIA和EMO⁃DB数据库下分别取得了84.93%和86.83%的未加权平均召回率(Unweighted average recall,UAR),相较于基线模型,引入深度残差收缩网络后的模型在CASIA和EMO⁃DB数据库上的未加权召回率分别提高5.3%和6.2%。