期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于改进深度森林算法的高速公路交通事故风险预测 被引量:3
1
作者 张浩 《安全与环境工程》 CAS CSCD 北大核心 2024年第6期91-99,共9页
高速公路交通事故风险预测对于实行动态交通安全管理至关重要。为探究影响高速公路交通事故风险的主要因素以及准确预测高速公路交通事故风险,提出了一种基于改进深度森林算法的高速公路交通事故风险预测模型。首先以高速公路交通事故... 高速公路交通事故风险预测对于实行动态交通安全管理至关重要。为探究影响高速公路交通事故风险的主要因素以及准确预测高速公路交通事故风险,提出了一种基于改进深度森林算法的高速公路交通事故风险预测模型。首先以高速公路交通事故数据、交通流数据、天气数据、道路条件和特殊时间段数据为基础,选取了能够表征高速公路交通事故风险的特征变量,并采用随机森林算法对特征变量的重要度进行了计算,筛选出对高速公路交通事故风险影响较大的重要特征变量,以解决后面计算过程中的维度灾难问题;然后运用基于决策树的LightGBM和XGBoost算法对深度森林模型的级联森林结构进行了改进;最后将改进深度森林算法应用于高速公路事故风险预测。结果表明:与现有的SVM、随机森林和深度森林算法相比,改进深度森林算法具有更优的预测性能,其预测准确率达到了88.84%,预测结果能为高速公路交通管理部门制定更为有效的安全管控措施提供决策支持。 展开更多
关键词 高速公路交通事故 风险预测 改进深度森林算法 深度学习
在线阅读 下载PDF
基于Spark和NRSCA策略的并行深度森林算法
2
作者 毛伊敏 刘绍芬 《计算机应用研究》 CSCD 北大核心 2024年第1期126-133,共8页
针对并行深度森林在大数据环境下存在冗余及无关特征过多、两端特征利用率过低、模型收敛速度慢以及级联森林并行效率低等问题,提出了基于Spark和NRSCA策略的并行深度森林算法——PDF-SNRSCA。首先,该算法提出了基于邻域粗糙集和Fisher ... 针对并行深度森林在大数据环境下存在冗余及无关特征过多、两端特征利用率过低、模型收敛速度慢以及级联森林并行效率低等问题,提出了基于Spark和NRSCA策略的并行深度森林算法——PDF-SNRSCA。首先,该算法提出了基于邻域粗糙集和Fisher score的特征选择策略(FS-NRS),通过衡量特征的相关性和冗余度,对特征进行过滤,有效减少了冗余及无关特征的数量;其次,提出了一种随机选择和等距提取的扫描策略(S-RSEE),保证了所有特征能够同概率被利用,解决了多粒度扫描两端特征利用率低的问题;最后,结合Spark框架,实现级联森林并行化训练,提出了基于重要性指数的特征筛选机制(FFM-II),筛选出非关键性特征,平衡增强类向量与原始类向量维度,从而加快模型收敛速度,同时设计了基于SCA的任务调度机制(TSM-SCA),将任务重新分配,保证集群负载均衡,解决了级联森林并行效率低的问题。实验表明,PDF-SNRSCA算法能有效提高深度森林的分类效果,且对深度森林并行化训练的效率也有大幅提升。 展开更多
关键词 并行深度森林算法 Spark框架 邻域粗糙集 正弦余弦算法 多粒度扫描
在线阅读 下载PDF
基于局部线性嵌入和深度森林算法的电力客户投诉预测模型 被引量:1
3
作者 张梅 保富 《电测与仪表》 北大核心 2024年第1期107-112,共6页
由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投... 由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投诉预测模型的输入特征向量进行降维处理,减少计算量和避免陷入局部最优解;对降维后的投诉预测特征向量进行多粒度扫描,提高其表征学习能力;基于级联森林建立深度森林算法模型,实现客户投诉预测。实际数据的仿真结果表明,与不进行降维处理及其他预测模型相比,文中所提出的预测模型可以更准确地预测客户投诉趋势,为电力企业客户投诉分析和预测提供了参考依据。 展开更多
关键词 电力客户 投诉预测模型 局部线性嵌入 深度森林算法
在线阅读 下载PDF
基于主成分分析和深度森林算法的S700K转辙机故障诊断 被引量:8
4
作者 胡小晨 郭宁 +1 位作者 沈拓 董德存 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期35-40,共6页
针对目前转辙机故障诊断准确性不高、效率低等问题,提出了一种基于主成分分析(PCA)和深度森林(gcForest)算法的故障诊断方法。对于S700K转辙机11种故障模式下的电流、功率曲线,采用主成分分析进行电流特征值特征简约,然后使用嵌入简约... 针对目前转辙机故障诊断准确性不高、效率低等问题,提出了一种基于主成分分析(PCA)和深度森林(gcForest)算法的故障诊断方法。对于S700K转辙机11种故障模式下的电流、功率曲线,采用主成分分析进行电流特征值特征简约,然后使用嵌入简约特征值的改进深度森林模型提高数据处理能力,增强模型内在特征代表性。结果表明,改进深度森林模型故障诊断准确率为97.62%,验证了该方法的有效性和优越性。 展开更多
关键词 故障诊断 S700K转辙机 主成分分析(PCA) 深度森林(gcForest)算法
在线阅读 下载PDF
基于深度森林算法的分布式WSN入侵检测模型 被引量:9
5
作者 董瑞洪 闫厚华 +1 位作者 张秋余 李学勇 《兰州理工大学学报》 CAS 北大核心 2020年第4期103-109,共7页
针对现有的特征选择算法和分类算法在无线传感器网络(WSN)入侵检测系统中检测性能表现不佳、检测实时性差、模型复杂度高等问题,提出一种基于随机森林和深度森林算法的分布式WSN入侵检测模型.该模型首先对传感器节点流量数据进行预处理... 针对现有的特征选择算法和分类算法在无线传感器网络(WSN)入侵检测系统中检测性能表现不佳、检测实时性差、模型复杂度高等问题,提出一种基于随机森林和深度森林算法的分布式WSN入侵检测模型.该模型首先对传感器节点流量数据进行预处理;然后将轻量级随机森林分类器部署到传感器节点和簇头节点,传感器节点和簇头节点合作对流量数据进行处理,并在基站上采用深度森林算法从大量流量数据中发现攻击行为;最后对WSN中的入侵行为进行实时分类入侵检测.使用无线传感器数据集WSN-DS和NSL-KDD数据集来评估所提出的模型性能.实验结果表明,该模型与现有的入侵检测模型相比,具有良好的检测性能,实时性较高,可避免模型过度拟合. 展开更多
关键词 入侵检测 无线传感器网络 随机森林 深度森林算法 集成分类器
在线阅读 下载PDF
基于Spark和三路交互信息的并行深度森林算法 被引量:4
6
作者 毛伊敏 周展 陈志刚 《通信学报》 EI CSCD 北大核心 2023年第8期228-240,共13页
针对并行深度森林在处理大数据时存在冗余及无关特征过多、类向量过长、模型收敛速度慢以及并行化训练效率低等问题,提出了基于Spark和三路交互信息的并行深度森林(PDF-STWII)算法。首先,提出基于特征交互的特征选择(FSFI)策略过滤原始... 针对并行深度森林在处理大数据时存在冗余及无关特征过多、类向量过长、模型收敛速度慢以及并行化训练效率低等问题,提出了基于Spark和三路交互信息的并行深度森林(PDF-STWII)算法。首先,提出基于特征交互的特征选择(FSFI)策略过滤原始特征,剔除无关及冗余特征;其次,提出多粒度向量消除(MGVE)策略,融合相似类向量,缩短类向量长度;再次,提出级联森林特征增强(CFFE)策略提高信息利用率,加快模型收敛速度;最后,结合Spark框架提出多级负载均衡(MLB)策略,通过自适应子森林划分和异构倾斜数据划分,提高并行化训练效率。实验结果表明,所提算法能显著提升模型分类效果,缩短并行化训练时间。 展开更多
关键词 Spark框架 并行深度森林算法 特征选择 多级负载均衡
在线阅读 下载PDF
基于深度随机森林算法的短期用户负荷预测——以金华地区为例 被引量:10
7
作者 胡兆龙 胡俊建 +3 位作者 彭浩 韩建民 朱响斌 丁智国 《电子科技大学学报》 EI CAS CSCD 北大核心 2023年第3期430-437,共8页
通过网络爬虫获取天气数据,并结合金华市用户负荷数据,采用深度随机森林算法对用户负荷进行短期预测。借助4种评价指标,通过对比支持向量回归算法、K近邻算、贝叶斯岭回归算法、随机森林算法以及多个深度神经网络算法,发现深度随机森林... 通过网络爬虫获取天气数据,并结合金华市用户负荷数据,采用深度随机森林算法对用户负荷进行短期预测。借助4种评价指标,通过对比支持向量回归算法、K近邻算、贝叶斯岭回归算法、随机森林算法以及多个深度神经网络算法,发现深度随机森林算法预测效果最佳,支持向量回归算法次之,而深度神经网络算法在该数据集上表现一般。 展开更多
关键词 深度随机森林算法 机器学习 短期负荷预测 天气信息
在线阅读 下载PDF
基于深度森林及电阻层析成像的气液两相流流型辨识 被引量:2
8
作者 张立峰 佟彤 肖凯 《计量学报》 CSCD 北大核心 2023年第6期893-898,共6页
提出了一种基于深度森林(DF)算法与电阻层析成像技术(ERT)的气液两相流流型辨识方法。首先利用ERT实验装置对4种典型流型进行数据采集,以多帧数据求均值的方式对采集的数据进行预处理;然后选择合适的基本分类器构建深度森林模型,并调整... 提出了一种基于深度森林(DF)算法与电阻层析成像技术(ERT)的气液两相流流型辨识方法。首先利用ERT实验装置对4种典型流型进行数据采集,以多帧数据求均值的方式对采集的数据进行预处理;然后选择合适的基本分类器构建深度森林模型,并调整模型的最大层数以保障分类的准确率;最后对多帧数据求均值的有效性和深度森林模型的流型辨识能力进行验证,并与深度神经网络(DNN)及卷积神经网络(CNN)2种传统深度学习算法进行比较。结果表明深度森林的流型辨识准确性优于其他2种算法,平均辨识精度可达98.75%,多帧数据求均值的预处理方法更有利于流型辨识。 展开更多
关键词 计量学 电阻层析成像 流型辨识 深度森林算法 气液两相流
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部