部分有序数据是同时包含有序特征与无序特征的一类数据,其广泛存在于现实生活中。传统的有序分类方法或者将所有特征都视为有序特征,或者对有序与无序特征分别进行处理,忽略了二者之间的关系,这些方法难以有效解决部分有序数据上的分类...部分有序数据是同时包含有序特征与无序特征的一类数据,其广泛存在于现实生活中。传统的有序分类方法或者将所有特征都视为有序特征,或者对有序与无序特征分别进行处理,忽略了二者之间的关系,这些方法难以有效解决部分有序数据上的分类问题。针对该问题,提出一种基于特征融合的部分有序深度森林模型,称为FFDF(feature fusion-based deep forest)。利用典型相关分析的思想,设计特征融合的贡献度计算方法,将有序特征和无序特征融合到同一特征空间,统一度量二者之间的关系。对融合的特征空间进行数据粒化,降低模型处理连续变量时的复杂性。设计融合空间下的特征矩阵输入级联森林,构建部分有序的深度森林模型。在来自UCI和WEKA的13个公共数据集上与部分单调决策树、有序分类模型、深度森林模型等六种方法进行比较实验,结果表明所提方法在准确性和平均绝对误差方面均优于对比方法;与集成模型深度森林gcForest和DF21进行了时间性能上的对比实验,结果表明所提方法在时间性能上优于对比方法。展开更多
为了有效实现评论文本的情感倾向性预测,在深度森林模型的基础上提出一种基于强化表征学习的深度森林算法BFDF(Boosting Feature of Deep Forest)来对文本进行情感分类。首先,提取二元特征与情感语义概率特征;其次,对二元特征中的评价...为了有效实现评论文本的情感倾向性预测,在深度森林模型的基础上提出一种基于强化表征学习的深度森林算法BFDF(Boosting Feature of Deep Forest)来对文本进行情感分类。首先,提取二元特征与情感语义概率特征;其次,对二元特征中的评价对象做聚类处理以及特征融合;然后,改进深度森林级联层的表征学习能力,避免特征信息逐渐削减;最后,将AdaBoost方法融入到深度森林,使深度森林注意到不同特征的重要性,进而得到改进的模型BFDF。在酒店评论语料集上进行了实验验证,实验结果证明了该方法的有效性。展开更多
复杂场景分类是遥感图像解译的一项重要内容。本文通过优化ResNet18深度残差网络和随机森林,实现了遥感图像复杂场景的高精度分类。首先通过数据扩充将数据库扩充以缓解因训练样本少带来的过拟合问题,然后采用ResNet18深度残差网络自动...复杂场景分类是遥感图像解译的一项重要内容。本文通过优化ResNet18深度残差网络和随机森林,实现了遥感图像复杂场景的高精度分类。首先通过数据扩充将数据库扩充以缓解因训练样本少带来的过拟合问题,然后采用ResNet18深度残差网络自动提取遥感图像场景特征,最后使用随机森林分类器实现复杂场景分类任务并分别在NWPU-RESISC45和UC Merced Land Use数据库上进行了实验。结果表明,本文模型场景分类准确率分别为98.86%和99.17%,与单独使用ResNet18深度残差网络相比,本文模型分类准确率分别提高3.36%和1.71%,相比于其他场景分类方法,本文模型分类准确率分别提高5.23%和1.55%。展开更多
针对分类模型在处理基因表达小样本高维度数据集上存在的分类准确性不足、过拟合、计算复杂度大等问题,提出一种改进模型Two Boosting Deep Forest(TBDForest)。在多描部分采用均等式特征利用方法对原始特征进行变换;在分类过程中考虑...针对分类模型在处理基因表达小样本高维度数据集上存在的分类准确性不足、过拟合、计算复杂度大等问题,提出一种改进模型Two Boosting Deep Forest(TBDForest)。在多描部分采用均等式特征利用方法对原始特征进行变换;在分类过程中考虑到模型所集成的每个森林的拟合质量,将上层最重要的部分判别特征输入到下一级联层,在层间改善类分布问题;对原级联层采用子层级联的结构,增加样本训练机会,减少训练开销,避免模型对参数的依赖。通过在五种疾病基因表达小样本数据集上的验证结果表明,改进的模型增强分类算法在小样本数据集的分类性能上达到了更好的分类效果。展开更多
文摘部分有序数据是同时包含有序特征与无序特征的一类数据,其广泛存在于现实生活中。传统的有序分类方法或者将所有特征都视为有序特征,或者对有序与无序特征分别进行处理,忽略了二者之间的关系,这些方法难以有效解决部分有序数据上的分类问题。针对该问题,提出一种基于特征融合的部分有序深度森林模型,称为FFDF(feature fusion-based deep forest)。利用典型相关分析的思想,设计特征融合的贡献度计算方法,将有序特征和无序特征融合到同一特征空间,统一度量二者之间的关系。对融合的特征空间进行数据粒化,降低模型处理连续变量时的复杂性。设计融合空间下的特征矩阵输入级联森林,构建部分有序的深度森林模型。在来自UCI和WEKA的13个公共数据集上与部分单调决策树、有序分类模型、深度森林模型等六种方法进行比较实验,结果表明所提方法在准确性和平均绝对误差方面均优于对比方法;与集成模型深度森林gcForest和DF21进行了时间性能上的对比实验,结果表明所提方法在时间性能上优于对比方法。
文摘目的比较深度森林联合模型、深度森林以及随机森林在医学影像数据分类中的预测性能。方法本研究提出深度森林联合模型,通过Sobol-MDA(Sobol-mean decrease accuracy)结合深度森林级联结构和随机森林的特征提取能力,对模拟实验和真实医学影像数据进行分析。模拟实验涵盖结局变量不均衡、变量间非线性关系、噪声变量、多重共线性及交互作用等场景。实例分析基于腮腺MRI数据,比较各模型在曲线下面积(area under curve,AUC)值等指标上的表现。结果在模拟实验以及实例分析中,深度森林联合模型表现优越,特别是在复杂交互作用场景下,其预测性能显著优于深度森林或随机森林模型。结论深度森林联合模型在应对复杂医学影像数据分类任务中具有显著优势,尤其在处理变量间存在高阶交互作用时,其预测性能优于深度森林。
文摘为了有效实现评论文本的情感倾向性预测,在深度森林模型的基础上提出一种基于强化表征学习的深度森林算法BFDF(Boosting Feature of Deep Forest)来对文本进行情感分类。首先,提取二元特征与情感语义概率特征;其次,对二元特征中的评价对象做聚类处理以及特征融合;然后,改进深度森林级联层的表征学习能力,避免特征信息逐渐削减;最后,将AdaBoost方法融入到深度森林,使深度森林注意到不同特征的重要性,进而得到改进的模型BFDF。在酒店评论语料集上进行了实验验证,实验结果证明了该方法的有效性。
文摘复杂场景分类是遥感图像解译的一项重要内容。本文通过优化ResNet18深度残差网络和随机森林,实现了遥感图像复杂场景的高精度分类。首先通过数据扩充将数据库扩充以缓解因训练样本少带来的过拟合问题,然后采用ResNet18深度残差网络自动提取遥感图像场景特征,最后使用随机森林分类器实现复杂场景分类任务并分别在NWPU-RESISC45和UC Merced Land Use数据库上进行了实验。结果表明,本文模型场景分类准确率分别为98.86%和99.17%,与单独使用ResNet18深度残差网络相比,本文模型分类准确率分别提高3.36%和1.71%,相比于其他场景分类方法,本文模型分类准确率分别提高5.23%和1.55%。
文摘针对分类模型在处理基因表达小样本高维度数据集上存在的分类准确性不足、过拟合、计算复杂度大等问题,提出一种改进模型Two Boosting Deep Forest(TBDForest)。在多描部分采用均等式特征利用方法对原始特征进行变换;在分类过程中考虑到模型所集成的每个森林的拟合质量,将上层最重要的部分判别特征输入到下一级联层,在层间改善类分布问题;对原级联层采用子层级联的结构,增加样本训练机会,减少训练开销,避免模型对参数的依赖。通过在五种疾病基因表达小样本数据集上的验证结果表明,改进的模型增强分类算法在小样本数据集的分类性能上达到了更好的分类效果。