期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
基于遗传算法特征优化的深度森林运动能耗估测
1
作者 谢溢翀 孙杨帆 +2 位作者 史立宇 黄旭萍 周彪 《传感器与微系统》 北大核心 2025年第3期161-164,共4页
针对运动能耗(EE)精确测量存在专业设备成本高、操作难度大的问题,因此利用多类型微型传感器集成的可穿戴设备采集运动相关数据,并利用机器学习模型对EE进行连续估测,是较为便利的替代方案。本文创新性地探究了深度森林(DF)算法在运动... 针对运动能耗(EE)精确测量存在专业设备成本高、操作难度大的问题,因此利用多类型微型传感器集成的可穿戴设备采集运动相关数据,并利用机器学习模型对EE进行连续估测,是较为便利的替代方案。本文创新性地探究了深度森林(DF)算法在运动量估计方面的可行性。同时,为了进一步降低估计模型复杂度,以适用于算力有限的可穿戴设备,对于DF算法的输入特征集进行了基于遗传算法(GA)的特征优选。在公开数据集上的测试结果表明:本文所提出的基于特征优化的DF运动量估测方案性能优于传统机器学习算法;并且在降低模型复杂度和算力要求的同时,进一步提升了EE的估测精度。 展开更多
关键词 运动能耗估测 深度森林 遗传算法 特征筛选
在线阅读 下载PDF
基于改进深度森林算法的高速公路交通事故风险预测 被引量:2
2
作者 张浩 《安全与环境工程》 CAS CSCD 北大核心 2024年第6期91-99,共9页
高速公路交通事故风险预测对于实行动态交通安全管理至关重要。为探究影响高速公路交通事故风险的主要因素以及准确预测高速公路交通事故风险,提出了一种基于改进深度森林算法的高速公路交通事故风险预测模型。首先以高速公路交通事故... 高速公路交通事故风险预测对于实行动态交通安全管理至关重要。为探究影响高速公路交通事故风险的主要因素以及准确预测高速公路交通事故风险,提出了一种基于改进深度森林算法的高速公路交通事故风险预测模型。首先以高速公路交通事故数据、交通流数据、天气数据、道路条件和特殊时间段数据为基础,选取了能够表征高速公路交通事故风险的特征变量,并采用随机森林算法对特征变量的重要度进行了计算,筛选出对高速公路交通事故风险影响较大的重要特征变量,以解决后面计算过程中的维度灾难问题;然后运用基于决策树的LightGBM和XGBoost算法对深度森林模型的级联森林结构进行了改进;最后将改进深度森林算法应用于高速公路事故风险预测。结果表明:与现有的SVM、随机森林和深度森林算法相比,改进深度森林算法具有更优的预测性能,其预测准确率达到了88.84%,预测结果能为高速公路交通管理部门制定更为有效的安全管控措施提供决策支持。 展开更多
关键词 高速公路交通事故 风险预测 改进深度森林算法 深度学习
在线阅读 下载PDF
基于主成分分析和深度森林算法的S700K转辙机故障诊断 被引量:6
3
作者 胡小晨 郭宁 +1 位作者 沈拓 董德存 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期35-40,共6页
针对目前转辙机故障诊断准确性不高、效率低等问题,提出了一种基于主成分分析(PCA)和深度森林(gcForest)算法的故障诊断方法。对于S700K转辙机11种故障模式下的电流、功率曲线,采用主成分分析进行电流特征值特征简约,然后使用嵌入简约... 针对目前转辙机故障诊断准确性不高、效率低等问题,提出了一种基于主成分分析(PCA)和深度森林(gcForest)算法的故障诊断方法。对于S700K转辙机11种故障模式下的电流、功率曲线,采用主成分分析进行电流特征值特征简约,然后使用嵌入简约特征值的改进深度森林模型提高数据处理能力,增强模型内在特征代表性。结果表明,改进深度森林模型故障诊断准确率为97.62%,验证了该方法的有效性和优越性。 展开更多
关键词 故障诊断 S700K转辙机 主成分分析(PCA) 深度森林(gcforest)算法
在线阅读 下载PDF
基于Spark和NRSCA策略的并行深度森林算法
4
作者 毛伊敏 刘绍芬 《计算机应用研究》 CSCD 北大核心 2024年第1期126-133,共8页
针对并行深度森林在大数据环境下存在冗余及无关特征过多、两端特征利用率过低、模型收敛速度慢以及级联森林并行效率低等问题,提出了基于Spark和NRSCA策略的并行深度森林算法——PDF-SNRSCA。首先,该算法提出了基于邻域粗糙集和Fisher ... 针对并行深度森林在大数据环境下存在冗余及无关特征过多、两端特征利用率过低、模型收敛速度慢以及级联森林并行效率低等问题,提出了基于Spark和NRSCA策略的并行深度森林算法——PDF-SNRSCA。首先,该算法提出了基于邻域粗糙集和Fisher score的特征选择策略(FS-NRS),通过衡量特征的相关性和冗余度,对特征进行过滤,有效减少了冗余及无关特征的数量;其次,提出了一种随机选择和等距提取的扫描策略(S-RSEE),保证了所有特征能够同概率被利用,解决了多粒度扫描两端特征利用率低的问题;最后,结合Spark框架,实现级联森林并行化训练,提出了基于重要性指数的特征筛选机制(FFM-II),筛选出非关键性特征,平衡增强类向量与原始类向量维度,从而加快模型收敛速度,同时设计了基于SCA的任务调度机制(TSM-SCA),将任务重新分配,保证集群负载均衡,解决了级联森林并行效率低的问题。实验表明,PDF-SNRSCA算法能有效提高深度森林的分类效果,且对深度森林并行化训练的效率也有大幅提升。 展开更多
关键词 并行深度森林算法 Spark框架 邻域粗糙集 正弦余弦算法 多粒度扫描
在线阅读 下载PDF
一种优化VMD的多尺度深度森林时序分类方法
5
作者 兰婷 白艳萍 +1 位作者 程蓉 续婷 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期166-173,共8页
为解决深度森林模型在处理复杂时间序列分类时难以充分捕捉非平稳数据的动态变化,以及多粒度扫描生成的高维数据增加冗余信息的问题,提出了一种基于优化VMD的多尺度深度森林方法。利用VMD对复杂时间序列进行分解,并引入SMA优化VMD中的参... 为解决深度森林模型在处理复杂时间序列分类时难以充分捕捉非平稳数据的动态变化,以及多粒度扫描生成的高维数据增加冗余信息的问题,提出了一种基于优化VMD的多尺度深度森林方法。利用VMD对复杂时间序列进行分解,并引入SMA优化VMD中的参数,从而更精准地提取多尺度信息;采用t-SNE技术对多粒度扫描后的特征数据进行降维,减少冗余特征;将降维后的数据输入到级联森林中进行分类,输出分类结果。在6个UCR公开数据集上与多种算法(如MLP、LA-ESN和DF21)进行对比,结果表明,所提算法具有较强的分类能力,为时间序列分类领域提供了新思路。 展开更多
关键词 时间序列分类 深度森林 VMD t-SNE 智能优化算法
在线阅读 下载PDF
基于局部线性嵌入和深度森林算法的电力客户投诉预测模型 被引量:1
6
作者 张梅 保富 《电测与仪表》 北大核心 2024年第1期107-112,共6页
由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投... 由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投诉预测模型的输入特征向量进行降维处理,减少计算量和避免陷入局部最优解;对降维后的投诉预测特征向量进行多粒度扫描,提高其表征学习能力;基于级联森林建立深度森林算法模型,实现客户投诉预测。实际数据的仿真结果表明,与不进行降维处理及其他预测模型相比,文中所提出的预测模型可以更准确地预测客户投诉趋势,为电力企业客户投诉分析和预测提供了参考依据。 展开更多
关键词 电力客户 投诉预测模型 局部线性嵌入 深度森林算法
在线阅读 下载PDF
基于多模深度森林和迭代Kuhn-Munkres的动态上车点推荐算法 被引量:1
7
作者 郭羽含 朱茹施 《计算机应用研究》 CSCD 北大核心 2024年第12期3634-3644,共11页
针对现存动态上车点配置模型在大规模算例的全局最优和求解效率方面存在瓶颈的问题,基于乘客步行距离、乘客步行时间、上车点路况指标以及至乘客目的地所需成本四个关键影响因子进行建模,并提出了基于多模深度森林的动态上车点预测算法... 针对现存动态上车点配置模型在大规模算例的全局最优和求解效率方面存在瓶颈的问题,基于乘客步行距离、乘客步行时间、上车点路况指标以及至乘客目的地所需成本四个关键影响因子进行建模,并提出了基于多模深度森林的动态上车点预测算法和一种迭代Kuhn-Munkres上车点配置算法。预测算法融合了多模态决策树结构和深度学习技术以提升模型预测准确性;配置算法通过多场景自适应机制自动调整边权重并选择最优边进行增广,以得到所有乘客和上车点的最优配置。实验结果表明,相较于其他主流预测模型,该预测算法平均绝对误差降低2.705,均方误差降低5.915,可决系数提升0.214,解释方差提升0.195;配置算法在乘客数量占优条件下的平均调度效果相较于实验中其他方案提高了2.04%。这表明预测算法和配置算法具有较高的实用性,且配置算法在处理大规模实例上具有明显优势。 展开更多
关键词 上车点推荐 多模深度森林 迭代Kuhn-Munkres算法 网约车 城市交通
在线阅读 下载PDF
基于深度森林算法的分布式WSN入侵检测模型 被引量:9
8
作者 董瑞洪 闫厚华 +1 位作者 张秋余 李学勇 《兰州理工大学学报》 CAS 北大核心 2020年第4期103-109,共7页
针对现有的特征选择算法和分类算法在无线传感器网络(WSN)入侵检测系统中检测性能表现不佳、检测实时性差、模型复杂度高等问题,提出一种基于随机森林和深度森林算法的分布式WSN入侵检测模型.该模型首先对传感器节点流量数据进行预处理... 针对现有的特征选择算法和分类算法在无线传感器网络(WSN)入侵检测系统中检测性能表现不佳、检测实时性差、模型复杂度高等问题,提出一种基于随机森林和深度森林算法的分布式WSN入侵检测模型.该模型首先对传感器节点流量数据进行预处理;然后将轻量级随机森林分类器部署到传感器节点和簇头节点,传感器节点和簇头节点合作对流量数据进行处理,并在基站上采用深度森林算法从大量流量数据中发现攻击行为;最后对WSN中的入侵行为进行实时分类入侵检测.使用无线传感器数据集WSN-DS和NSL-KDD数据集来评估所提出的模型性能.实验结果表明,该模型与现有的入侵检测模型相比,具有良好的检测性能,实时性较高,可避免模型过度拟合. 展开更多
关键词 入侵检测 无线传感器网络 随机森林 深度森林算法 集成分类器
在线阅读 下载PDF
基于Spark和三路交互信息的并行深度森林算法 被引量:3
9
作者 毛伊敏 周展 陈志刚 《通信学报》 EI CSCD 北大核心 2023年第8期228-240,共13页
针对并行深度森林在处理大数据时存在冗余及无关特征过多、类向量过长、模型收敛速度慢以及并行化训练效率低等问题,提出了基于Spark和三路交互信息的并行深度森林(PDF-STWII)算法。首先,提出基于特征交互的特征选择(FSFI)策略过滤原始... 针对并行深度森林在处理大数据时存在冗余及无关特征过多、类向量过长、模型收敛速度慢以及并行化训练效率低等问题,提出了基于Spark和三路交互信息的并行深度森林(PDF-STWII)算法。首先,提出基于特征交互的特征选择(FSFI)策略过滤原始特征,剔除无关及冗余特征;其次,提出多粒度向量消除(MGVE)策略,融合相似类向量,缩短类向量长度;再次,提出级联森林特征增强(CFFE)策略提高信息利用率,加快模型收敛速度;最后,结合Spark框架提出多级负载均衡(MLB)策略,通过自适应子森林划分和异构倾斜数据划分,提高并行化训练效率。实验结果表明,所提算法能显著提升模型分类效果,缩短并行化训练时间。 展开更多
关键词 Spark框架 并行深度森林算法 特征选择 多级负载均衡
在线阅读 下载PDF
基于Lightgbm和XGBoost的优化深度森林算法 被引量:15
10
作者 谢军飞 张海清 +2 位作者 李代伟 于曦 邓钧予 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期833-840,共8页
教育规模不断扩大,高校在校生人数持续上升,导致学生的能力参差不齐.为了提升教育水平,教师需掌握学生在校期间的学习状态,预测学生期末成绩是教师掌握学生学习状态的重要途径之一.目前的研究工作主要采用传统的机器学习算法进行成绩预... 教育规模不断扩大,高校在校生人数持续上升,导致学生的能力参差不齐.为了提升教育水平,教师需掌握学生在校期间的学习状态,预测学生期末成绩是教师掌握学生学习状态的重要途径之一.目前的研究工作主要采用传统的机器学习算法进行成绩预测,如随机森林、贝叶斯、深度森林等,但精度不高;也有利用深度学习算法进行预测,但模型缺少可解释性. Lightgbm(Light Gradient Boosting Machine)算法内存消耗低,时间复杂度低,而XGBoost(eXtreme Gradient Boosting)算法精度高.因此,基于提高精度与降低模型内存消耗的策略,将深度森林中的随机森林与极限随机森林模块分别替换为Lightgbm和XGbBoost,提出一种基于Lightgbm和XGBoost算法的优化深度森林算法LIGHT-XDF.在八个数据集上与其他模型进行对比实验,结果表明,LIGHT-XDF算法的综合性能最好. 展开更多
关键词 Lightgbm算法 XGBoost算法 深度森林 综合性能
在线阅读 下载PDF
基于深度随机森林算法的短期用户负荷预测——以金华地区为例 被引量:9
11
作者 胡兆龙 胡俊建 +3 位作者 彭浩 韩建民 朱响斌 丁智国 《电子科技大学学报》 EI CAS CSCD 北大核心 2023年第3期430-437,共8页
通过网络爬虫获取天气数据,并结合金华市用户负荷数据,采用深度随机森林算法对用户负荷进行短期预测。借助4种评价指标,通过对比支持向量回归算法、K近邻算、贝叶斯岭回归算法、随机森林算法以及多个深度神经网络算法,发现深度随机森林... 通过网络爬虫获取天气数据,并结合金华市用户负荷数据,采用深度随机森林算法对用户负荷进行短期预测。借助4种评价指标,通过对比支持向量回归算法、K近邻算、贝叶斯岭回归算法、随机森林算法以及多个深度神经网络算法,发现深度随机森林算法预测效果最佳,支持向量回归算法次之,而深度神经网络算法在该数据集上表现一般。 展开更多
关键词 深度随机森林算法 机器学习 短期负荷预测 天气信息
在线阅读 下载PDF
基于深度森林及电阻层析成像的气液两相流流型辨识 被引量:1
12
作者 张立峰 佟彤 肖凯 《计量学报》 CSCD 北大核心 2023年第6期893-898,共6页
提出了一种基于深度森林(DF)算法与电阻层析成像技术(ERT)的气液两相流流型辨识方法。首先利用ERT实验装置对4种典型流型进行数据采集,以多帧数据求均值的方式对采集的数据进行预处理;然后选择合适的基本分类器构建深度森林模型,并调整... 提出了一种基于深度森林(DF)算法与电阻层析成像技术(ERT)的气液两相流流型辨识方法。首先利用ERT实验装置对4种典型流型进行数据采集,以多帧数据求均值的方式对采集的数据进行预处理;然后选择合适的基本分类器构建深度森林模型,并调整模型的最大层数以保障分类的准确率;最后对多帧数据求均值的有效性和深度森林模型的流型辨识能力进行验证,并与深度神经网络(DNN)及卷积神经网络(CNN)2种传统深度学习算法进行比较。结果表明深度森林的流型辨识准确性优于其他2种算法,平均辨识精度可达98.75%,多帧数据求均值的预处理方法更有利于流型辨识。 展开更多
关键词 计量学 电阻层析成像 流型辨识 深度森林算法 气液两相流
在线阅读 下载PDF
基于贪心组合优化的分布极端不平衡分类算法
13
作者 陈兴国 许静 +1 位作者 李扬 罗玉盘 《小型微型计算机系统》 CSCD 北大核心 2024年第10期2411-2419,共9页
现有针对不平衡数据分类的研究主要从重采样、特征、代价和算法等4个角度展开,方法多样,但针对极端不平衡的数据分布仍缺乏有效算法.本文的目标是通过结合各种算法的特性获取一个最优性能的组合算法.本文假设算法间的组合满足次模函数性... 现有针对不平衡数据分类的研究主要从重采样、特征、代价和算法等4个角度展开,方法多样,但针对极端不平衡的数据分布仍缺乏有效算法.本文的目标是通过结合各种算法的特性获取一个最优性能的组合算法.本文假设算法间的组合满足次模函数性质,并采用贪心的组合优化方法.具体而言,选择深度森林算法为基础,依次组合最优重采样方法、以异常检测思想的特征提取方法对数据进行的特征处理方法或基于贝叶斯优化的最优代价敏感矩阵方法.在3种组合算法中选择分类性能最优的算法组合,再次组合其余角度的方法,判断分类性能是否再次提升.实验选择两组极端不平衡数据——真实饮用水数据和UCI数据库中的page-blocks数据进行验证.结果表明,基于贪心优化对算法间进行组合,在3轮迭代后得到的算法组合,较单一算法其分类性能能有进一步的提升. 展开更多
关键词 次模函数 贪心优化 数据分布极端不平衡 深度森林 组合算法
在线阅读 下载PDF
基于气象因子深度学习的森林火灾预测方法 被引量:18
14
作者 孙立研 刘美玲 +1 位作者 周礼祥 于洋 《林业工程学报》 CSCD 北大核心 2019年第3期132-136,共5页
森林火灾一旦发生将对生态系统造成严重的破坏,间接导致气候的变化和极端天气频发。对森林火灾的发生进行准确预测可提前采取有效的防控措施,具有重要意义。传统林火预测模型多为数学方法和浅层神经网络,当数据量增大时易出现建模困难... 森林火灾一旦发生将对生态系统造成严重的破坏,间接导致气候的变化和极端天气频发。对森林火灾的发生进行准确预测可提前采取有效的防控措施,具有重要意义。传统林火预测模型多为数学方法和浅层神经网络,当数据量增大时易出现建模困难以及预测精度降低等问题。深度学习模型在处理大量非线性数据上具有一定的优势,其模型具有多层网络结构,通过训练大量数据可提取出具有代表性的特征值,发现数据间的隐含关系,达到准确分类预测的目的。因此,本研究提出一种基于深度学习的林火预测方法,将深度信念网络(deep belief network,DBN)作为预测模型,气象因子作为输入数据,以解决传统林火预测模型在面对大量数据时预测效果不佳的问题;同时结合过采样SMOTE(synthetic minority oversampling technique)算法,平衡林火数据集和增加训练数据量,提升了森林火灾的预测准确度。结果表明,在面对更大的数据量时,该模型预测精度明显优于其他传统林火预测模型,证明了将深度学习应用在林火预测的优越性。该研究可为深度学习在林业领域的应用提供参考。 展开更多
关键词 森林火灾 预测模型 气象因子 深度信念网络 SMOTE算法
在线阅读 下载PDF
基于改进深度森林的采煤机拖拽电缆挤压力识别方法 被引量:2
15
作者 石港 雷志鹏 《工矿自动化》 CSCD 北大核心 2023年第10期8-16,51,共10页
采煤机拖拽电缆在运行中常受到外部挤压力作用,致使电缆绝缘发生局部放电,影响电缆使用寿命。现有研究侧重于局部放电规律和严重程度的分析,无法评估乙丙橡胶绝缘电缆所承受应力的大小,导致无法掌握矿用乙丙橡胶绝缘电缆的运行状态。针... 采煤机拖拽电缆在运行中常受到外部挤压力作用,致使电缆绝缘发生局部放电,影响电缆使用寿命。现有研究侧重于局部放电规律和严重程度的分析,无法评估乙丙橡胶绝缘电缆所承受应力的大小,导致无法掌握矿用乙丙橡胶绝缘电缆的运行状态。针对该问题,提出一种基于改进深度森林(S-DF)的采煤机拖拽电缆挤压力识别方法。通过实验测量了不同挤压力下采煤机拖拽电缆的局部放电,分析了局部放电谱图、平均放电电流、最大放电量和击穿场强随所施挤压力和电压的变化规律,计算了局部放电的统计特征参量。基于统计特征参量,采用S-DF模型对挤压力大小进行识别。S-DF模型在深度森林(DF)中引入Stacking集成算法,以提升识别准确率。研究结果表明:不同电压下,最大放电量和平均放电电流均随着挤压力的增大而减小;击穿场强随着挤压力的增大呈先增大后减小的趋势,挤压力大于2000N时的击穿场强小于未挤压时的击穿场强;不同挤压力下的局部放电统计特征参量可作为放电指纹,S-DF模型能准确地识别电缆所受挤压力的大小,且识别率高于其他传统分类算法。 展开更多
关键词 采煤机拖拽电缆 挤压力识别 改进深度森林 局部放电 统计特征参量 Stacking集成算法
在线阅读 下载PDF
融合时空流差的网约车双模式混合调度算法 被引量:1
16
作者 郭羽含 李文华 钱亚冠 《计算机工程》 CAS CSCD 北大核心 2024年第6期377-393,共17页
服务车辆时空分布与出行需求的不一致严重影响网约车平台的服务效率,降低平台和服务车辆的收益以及乘客的服务体验。针对该问题,提出融合空间、时间和天气3种维度影响因素的时空流差计算方法,并构造双层深度森林模型对时空流差进行准确... 服务车辆时空分布与出行需求的不一致严重影响网约车平台的服务效率,降低平台和服务车辆的收益以及乘客的服务体验。针对该问题,提出融合空间、时间和天气3种维度影响因素的时空流差计算方法,并构造双层深度森林模型对时空流差进行准确预测。双层深度森林模型通过集成两种不同输入数据的深度森林模型来提升模型预测准确性。基于时空流差预测,设计一种在线局部调度与离线全局调度相结合的双模式混合调度算法。在线局部调度采用集成并行和n阶段求解模式对正在等待订单的车辆进行实时调度,离线全局调度则通过遗传匹配算法对可提前预测的车辆进行离线全局调度。依据遗传算法获取最优路径以及车辆对应子空间的最优匹配值,设计一种迭代Kuhn-Munkres算法和更新机制得到所有车辆和子空间的最优匹配。实验结果表明,该预测模型较其他预测模型解释方差平均提升0.13,确定系数平均提升0.16,平均绝对误差平均减少2.39,均方误差平均减少100.44;调度算法可将全局供需差异降低57.16%,司机接单率提升88.4%。 展开更多
关键词 网约车 时空流差 深度森林 双模式 调度算法
在线阅读 下载PDF
基于OOA-RF的H13钢激光表面硬化工艺参数优化
17
作者 梁强 徐彬源 +2 位作者 徐永航 杜彦斌 李永亮 《表面技术》 北大核心 2025年第5期217-232,275,共17页
目的为提高激光作用于H13钢表面的硬化效果,提出一种基于鱼鹰优化算法(OOA)、优化随机森林算法(RF)的H13钢激光表面硬化工艺参数预测方法。方法首先采用有限元模型粗选激光功率、扫描速度、搭接率等工艺参数的范围,然后在该工艺参数范... 目的为提高激光作用于H13钢表面的硬化效果,提出一种基于鱼鹰优化算法(OOA)、优化随机森林算法(RF)的H13钢激光表面硬化工艺参数预测方法。方法首先采用有限元模型粗选激光功率、扫描速度、搭接率等工艺参数的范围,然后在该工艺参数范围下设计三因素五水平的中心复合试验(CCD),通过有限元模型得到硬化层参数。然后,分别构建响应面(RSM)、RF和基于OOA-RF的平均淬透深度、峰谷差值、峰值温度的预测模型,并对3种模型的预测精度进行分析对比。通过多目标遗传算法(NSGA-Ⅱ)进行工艺参数寻优,并结合优劣解距离法(TOPSIS)和熵权法(EWM)对寻优解集重新进行排序,从而得到最佳工艺参数组合。结果在最优工艺参数功率为517W、扫描速度为5mm/s、搭接率为48%下进行试验,得到平均淬透深度为723.3μm,与预测值的相对误差为11.15%,峰谷差值为58.75μm,与预测值的相对误差为3.77%,硬化表面平整,无明显凹陷现象,激光表面硬化前的硬度为(165.2±9.2)HV0.5,经表面硬化后提升至(381.4±86.2)HV0.5,平均硬度提高了约1.3倍。结论可为合金激光表面硬化工艺参数的寻优提供参考。 展开更多
关键词 激光表面硬化 随机森林算法 有限元模型 平均淬透深度 中心复合试验 多目标遗传算法
在线阅读 下载PDF
基于天气特征的高速公路交通流预测方法研究
18
作者 袁辉 谢庆 +3 位作者 计明军 吴炜昌 曾斌 姬生忠 《现代电子技术》 北大核心 2025年第8期164-172,共9页
随着高速公路网络的规模扩展和智能交通系统的不断完善,交通流预测在提高道路资源利用效率和缓解交通拥堵方面起着至关重要的作用。现有的预测方法往往忽视了天气特征动态变化对交通流的影响,故文中旨在运用集成深度学习模型来探索天气... 随着高速公路网络的规模扩展和智能交通系统的不断完善,交通流预测在提高道路资源利用效率和缓解交通拥堵方面起着至关重要的作用。现有的预测方法往往忽视了天气特征动态变化对交通流的影响,故文中旨在运用集成深度学习模型来探索天气特征对高速公路交通流的影响。利用随机森林算法从历史交通流量和天气数据中提取出相关性较高的天气特征,采用粒子群优化算法对长短期记忆神经网络模型的超参数进行优化,构建一个融合天气特征数据的深度学习预测框架,将经过筛选的天气特征序列输入至预测框架模型中进行训练和预测。通过真实数据集上的实验验证了所提方法的有效性和泛化能力。实验结果表明,所提的集成深度学习方法相比现有的深度学习方法具有更好的拟合度、预测精度和稳定性,能够更准确地捕捉天气特征动态变化对交通流的影响。 展开更多
关键词 智能交通系统 高速公路交通流预测 天气特征 集成深度学习 随机森林算法 粒子群优化算法 长短期记忆神经网络 超参数优化
在线阅读 下载PDF
融合用户兴趣表征与注意力机制的推荐算法 被引量:4
19
作者 孙静 孙静宇 +1 位作者 李璨 魏东 《计算机工程与设计》 北大核心 2021年第3期814-821,共8页
为利用用户行为挖掘用户的兴趣,提出一种融合用户兴趣表征与注意力机制的推荐算法。利用CVR算法将传统的用户-项目表征转换为用户-兴趣表征;构建一种应用于用户兴趣预测的深度森林模型,引入兴趣簇重要性作为特征选择权重,融合时间注意... 为利用用户行为挖掘用户的兴趣,提出一种融合用户兴趣表征与注意力机制的推荐算法。利用CVR算法将传统的用户-项目表征转换为用户-兴趣表征;构建一种应用于用户兴趣预测的深度森林模型,引入兴趣簇重要性作为特征选择权重,融合时间注意力机制进行兴趣预测,将用户-兴趣模型结合基于用户的协同过滤算法预测推荐结果。两个数据集上的实验结果表明,该算法能够提高用户兴趣预测准确率,提升推荐效果。 展开更多
关键词 深度森林 向量表征 停留时间 兴趣预测 推荐算法
在线阅读 下载PDF
基于深度学习的电网调控系统异常检测与多阶段风险预警 被引量:27
20
作者 王瑾 裴亮 《沈阳工业大学学报》 CAS 北大核心 2021年第6期601-607,共7页
针对复杂电网调控系统中大部分风险预警技术存在准确率低的问题,提出了一种基于深度学习的电网调控系统异常检测与多阶段风险预警技术.在综合考虑系统异常类型的基础上构建了运行系统健康度评估指标.利用随机森林算法进行系统异常状态检... 针对复杂电网调控系统中大部分风险预警技术存在准确率低的问题,提出了一种基于深度学习的电网调控系统异常检测与多阶段风险预警技术.在综合考虑系统异常类型的基础上构建了运行系统健康度评估指标.利用随机森林算法进行系统异常状态检测,并根据检测结果将系统状态分成轻压力区、拐点区和崩溃区3个阶段,结合人工神经网络模型预测系统运行状态的变化趋势并及时预警.仿真试验结果表明,3个阶段的异常检测率分别为94.53%、88.79%和80.12%,且在轻压力区的预测误差小于1%,拐点区预测误差低于10%,均优于现有异常检测与预警技术. 展开更多
关键词 电网调控系统 异常检测 随机森林算法 深度学习 人工神经网络 风险预警 多系统运行阶段 预测误差
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部