期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于深度循环网络的声纹识别方法研究及应用 被引量:29
1
作者 余玲飞 刘强 《计算机应用研究》 CSCD 北大核心 2019年第1期153-158,共6页
声纹识别是当前热门的生物特征识别技术之一,能够通过说话人的语音识别其身份。针对声纹识别技术进行了研究,提出了一种基于卷积神经网络(CNN)和深度循环网络(RNN)的声纹识别方案CDRNN。CDRNN结合了CNN和RNN的优势,可用于移动终端声纹... 声纹识别是当前热门的生物特征识别技术之一,能够通过说话人的语音识别其身份。针对声纹识别技术进行了研究,提出了一种基于卷积神经网络(CNN)和深度循环网络(RNN)的声纹识别方案CDRNN。CDRNN结合了CNN和RNN的优势,可用于移动终端声纹识别。CDRNN将说话者的原始语音信息经过一系列的处理并生成一张二维语谱图,利用CNN长于处理图像的优势从语谱图中提取语音信号的个性特征,这些个性特征再输入到deep RNN中完成声纹识别,从而确定说话者的身份。实验结果表明了CDRNN方案能够获得比GMMUBM等其他方案更好的识别准确率。 展开更多
关键词 声纹识别 深度循环网络 卷积神经网络 语谱图
在线阅读 下载PDF
基于轻量化深度卷积循环网络的MVS方法
2
作者 佘维 孔祥基 +2 位作者 郭淑明 田钊 李英豪 《郑州大学学报(工学版)》 CAS 北大核心 2024年第4期11-18,共8页
针对基于深度学习的MVS方法存在网络参数量大、显存占用较高的问题,提出一种基于轻量化深度卷积循环网络的MVS方法。首先,采用轻量化多尺度特征提取网络提取图像的高层语义特征图,构建稀疏代价体减小计算体积;其次,使用卷积循环网络对... 针对基于深度学习的MVS方法存在网络参数量大、显存占用较高的问题,提出一种基于轻量化深度卷积循环网络的MVS方法。首先,采用轻量化多尺度特征提取网络提取图像的高层语义特征图,构建稀疏代价体减小计算体积;其次,使用卷积循环网络对代价体进行正则化,一次平面扫描完成正则化过程,减少显存占用;最后,通过深度图扩展模块扩展稀疏深度图为稠密深度图,并结合优化算法保证重建精度。在DTU数据集上与最近的方法进行对比,包括传统MVS方法Camp、Furu、Tola、Gipuma,基于深度学习的MVS方法SurfaceNet、PU-Net、MVSNet、R-MVSNet、Point-MVSNet、Fast-MVSNet、GBI-Net、TransMVSNet。实验结果表明:所提方法在精度上与其他方法保持较小差距的前提下,能够将预测时显存开销降低至3.1 GB。 展开更多
关键词 轻量化 深度卷积循环网络 MVS方法 正则化 DTU数据集
在线阅读 下载PDF
基于深度循环神经网络的异常用电检测方法 被引量:30
3
作者 严勤 邓高峰 +2 位作者 胡涛 胡志强 马建 《中国测试》 CAS 北大核心 2021年第7期99-104,共6页
现有的窃电检测方法通常利用电力用户的静态特征和浅层的检测模型,没有充分利用隐含在数据下的时序特征。为此,该文提出基于双向深度循环神经网络的窃电检测方法,分别采用门控循环单元和长短时记忆网络建立双向深度循环神经网络模型,输... 现有的窃电检测方法通常利用电力用户的静态特征和浅层的检测模型,没有充分利用隐含在数据下的时序特征。为此,该文提出基于双向深度循环神经网络的窃电检测方法,分别采用门控循环单元和长短时记忆网络建立双向深度循环神经网络模型,输入用户的用电量数据,利用循环神经网络提取数据的时序特性,将时序特征输入反向传播神经网络进行分类。对爱尔兰社会科学数据档案馆提供的电力用户行为试验数据进行实验分析,该数据集包含5000个家庭和企业用户超过一年的用电量数据,采样时间为30 min。结果表明,与传统浅层的神经网络模型相比,双向深度循环神经网络的窃电检测方法具有更高的准确度和鲁棒性。 展开更多
关键词 高级计量架构 窃电检测 深度循环网络 门控循环单元 长短时记忆网络
在线阅读 下载PDF
基于深度循环神经网络的换相失败边界检测 被引量:4
4
作者 王卉 王增平 刘席洋 《现代电力》 北大核心 2019年第6期88-93,共6页
交直流混联电网中交流故障导致的换相失败,可能引发交流保护误动、拒动,造成连锁性故障。因此,快速精准的换相失败边界检测对提升交流保护性能、优化交直流保护协同配合、保障电网安全稳定运行具有重要意义。对此,提出了基于深度循环神... 交直流混联电网中交流故障导致的换相失败,可能引发交流保护误动、拒动,造成连锁性故障。因此,快速精准的换相失败边界检测对提升交流保护性能、优化交直流保护协同配合、保障电网安全稳定运行具有重要意义。对此,提出了基于深度循环神经网络的换相失败边界检测方法。利用逆变站换流母线三相电压、直流电流及触发角指令实时值等站域信息,实现可综合考虑多因素耦合作用,可准确追溯引发换相失败原因,并含有一定的预测功能的换相失败边界检测新方法。 展开更多
关键词 交直流混联电网 深度循环神经网络 换相失败边界检测 多因素 站域信息
在线阅读 下载PDF
基于深度循环神经网络的地铁供电系统负荷预测 被引量:3
5
作者 刘江涛 延巧娜 +2 位作者 周涛 邵雷 陈中 《电气工程学报》 CSCD 2022年第4期309-317,共9页
随着国民经济持续发展、城市化进程加快,地铁建设也随之快速发展,地铁供电系统也相应地日益庞大,地铁供电系统负荷已然成为城市电力系统负荷的重要组成部分。由于地铁供电系统负荷所呈现的移动性、时变性、非线性等特点,对地铁供电系统... 随着国民经济持续发展、城市化进程加快,地铁建设也随之快速发展,地铁供电系统也相应地日益庞大,地铁供电系统负荷已然成为城市电力系统负荷的重要组成部分。由于地铁供电系统负荷所呈现的移动性、时变性、非线性等特点,对地铁供电系统负荷预测技术的研究越来越重要。首先对于地铁供电系统负荷预测开展研究,考虑了地铁历史负荷、地铁换乘站、地铁地上/地下形式、客流量、天气、温度等多维度因素,再基于堆叠式降噪自动编码器对多维度因素进行特征学习,基于适用于处理序列性质非线性问题的深度循环神经网络,提出了一种地铁供电系统负荷预测方法。最后通过南京地铁的实际运行数据验证了所提预测方法的有效性和优越性,该方法对于地铁供电系统短期和中长期负荷预测均有较好的预测效果。针对南京地铁待建的地铁站,进行中长期负荷预测,为其主站定容提供参考依据。 展开更多
关键词 地铁供电系统 负荷预测 深度学习 多维度因素 深度循环神经网络
在线阅读 下载PDF
用于下一项推荐的序列感知深度网络 被引量:3
6
作者 赵串串 游进国 李晓武 《小型微型计算机系统》 CSCD 北大核心 2020年第7期1389-1394,共6页
推荐系统旨在解决项目的信息爆炸问题并为用户提供个性化推荐.通常,用户交互的历史项目对于用户交互的下一个项目是有着不同的影响的.为此,本文提出一种序列感知深度网络(SeqaDN).本算法主要分为三部分,即项目嵌入、序列感知和深度神经... 推荐系统旨在解决项目的信息爆炸问题并为用户提供个性化推荐.通常,用户交互的历史项目对于用户交互的下一个项目是有着不同的影响的.为此,本文提出一种序列感知深度网络(SeqaDN).本算法主要分为三部分,即项目嵌入、序列感知和深度神经网络偏好学习.首先,通过Item2vec项目嵌入方法将项目的上下文项目作为输入,得到项目的嵌入;其次,本文在Seqa DN中添加了一个自注意力网络,以感知序列中每个项目关于当前下一个项目的不同影响权重;最后,基于深度双向循环神经网络学习用户的历史偏好.通过在真实数据集MovieLens上设置对比实验验证算法有效性,与传统算法以及同类型算法作对比,实验结果证明了SeqaDN比现有的序列推荐方法取得了更好的推荐性能. 展开更多
关键词 下一项推荐 序列感知 自注意力网络 深度双向循环神经网络
在线阅读 下载PDF
聚类与信息共享的多智能体深度强化学习协同控制交通灯 被引量:1
7
作者 杜同春 王波 +2 位作者 程浩然 罗乐 曾能民 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期538-545,共8页
该文提出一种适用于多路口交通灯实时控制的多智能体深度循环Q-网络(MADRQN),目的是提高多个路口的联合控制效果。该方法将交通灯控制建模成马尔可夫决策过程,将每个路口的控制器作为智能体,根据位置和观测信息对智能体聚类,然后在聚类... 该文提出一种适用于多路口交通灯实时控制的多智能体深度循环Q-网络(MADRQN),目的是提高多个路口的联合控制效果。该方法将交通灯控制建模成马尔可夫决策过程,将每个路口的控制器作为智能体,根据位置和观测信息对智能体聚类,然后在聚类内部进行信息共享和中心化训练,并在每个训练过程结束时将评价值最高的值函数网络参数分享给其它智能体。在城市交通仿真软件(SUMO)下的仿真实验结果表明,所提方法能够减少通信的数据量,使得智能体之间的信息共享和中心化训练更加可行和高效,车辆平均等待时长少于当前最优的基于多智能体深度强化学习的交通灯控制方法,能够有效地缓解交通拥堵。 展开更多
关键词 交通信号灯协同控制 集中训练分散执行 强化学习智能体聚类 生长型神经气 深度循环Q网络
在线阅读 下载PDF
基于深度学习的房间冷负荷预测模型 被引量:2
8
作者 林越 刘廷章 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期1068-1075,共8页
准确的房间冷负荷预测是空调运行过程节能的基础.首先,根据房间能量平衡方程,通过分析供冷量、冷负荷和蓄热量的关系,提出调温模式下房间负荷预测模型;然后,利用频域分解法实现蓄热计算,应用深度循环神经网络实现温度恒定条件下冷负荷预... 准确的房间冷负荷预测是空调运行过程节能的基础.首先,根据房间能量平衡方程,通过分析供冷量、冷负荷和蓄热量的关系,提出调温模式下房间负荷预测模型;然后,利用频域分解法实现蓄热计算,应用深度循环神经网络实现温度恒定条件下冷负荷预测;最后,综合温度变化下的蓄热量和温度恒定条件下的冷负荷预测,得到调温模式下房间冷负荷预测值.为提升深度学习算法收敛速度,在深度循环神经网络反向传播修正参数的过程中引入了高斯-牛顿法-LM(Levenberg-Marquardt)法自适应切换的学习算法.仿真实验和实测实验均表明,该方法能快速有效地实现房间逐时负荷预测.本方法实现了调温模式下房间负荷需求的快速精确计算,可用于实现建筑被动热储能的定量计算,同时为整个电网需求侧直接负荷控制提供可借鉴的思路. 展开更多
关键词 房间冷负荷 深度循环神经网络 负荷预测 节能
在线阅读 下载PDF
基于小波特征提取与深度学习的微电网故障诊断与分类方法 被引量:19
9
作者 姚欣 邢砾云 辛平 《智慧电力》 北大核心 2021年第12期17-24,共8页
针对现有微电网(MG)故障诊断准确率不高,分类精度不理想等问题,提出了一种基于小波特征提取与深度学习的微电网故障诊断与分类方法。首先,采用最大重叠离散小波变换(MODWT)和母小波提取MG电力信号特征,并进行三级分解,以获得高精度的信... 针对现有微电网(MG)故障诊断准确率不高,分类精度不理想等问题,提出了一种基于小波特征提取与深度学习的微电网故障诊断与分类方法。首先,采用最大重叠离散小波变换(MODWT)和母小波提取MG电力信号特征,并进行三级分解,以获得高精度的信号特征提取。然后,利用长短期记忆网络优化深度Q网络,构建深度循环Q网络(DRQN),更好地分析复杂数据且克服噪声的干扰。最后,将MODWT每个分解层次上的信号分量能量输入DRQN,实现故障的诊断和分类。基于MATLAB环境搭建MG系统仿真模型对所提方法进行实验论证,结果表明使用高采样频率和电流、电压信号时,诊断性能最佳,分类准确率超过91%。同时,所提方法在11种故障类型和4种场景下的分类准确率均超过90%,优于其他对比方法。 展开更多
关键词 微电网 故障诊断 故障分类 最大重叠离散小波变换 深度循环Q网络 长短期记忆网络 特征提取
在线阅读 下载PDF
基于CRNN的汽车发动机声纹个体识别方法 被引量:4
10
作者 高晓利 李捷 +2 位作者 王维 赵火军 骆明伟 《火力与指挥控制》 CSCD 北大核心 2021年第3期150-153,159,共5页
为提高声纹个体识别率,提出了一种基于卷积神经网络(CNN)和深度循环神经网络(RNN)的声纹个体识别方案CRNN,用于发动机声纹个体识别。该方法通过优化CRNN网络参数,挖掘声谱图“纹路”特征和时序特征,解决现有方法不能充分利用声音信号特... 为提高声纹个体识别率,提出了一种基于卷积神经网络(CNN)和深度循环神经网络(RNN)的声纹个体识别方案CRNN,用于发动机声纹个体识别。该方法通过优化CRNN网络参数,挖掘声谱图“纹路”特征和时序特征,解决现有方法不能充分利用声音信号特征的问题。基于实采汽车发动机声音信号的仿真结果表明,相对于传统方法,改进CRNN能获得更高识别率,达到了98.75%。 展开更多
关键词 声纹个体识别 卷积神经网络 深度循环神经网络 声谱图
在线阅读 下载PDF
基于强化学习的改进NSGA-Ⅱ算法的城市快速路入口匝道控制
11
作者 陈娟 郭琦 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期666-680,共15页
为了缓解城市快速路拥堵和尾气排放问题,提出了基于竞争结构和深度循环Q网络的改进非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ based on dueling deep recurrent Q network, DRQN-NSGA-Ⅱ).该算法结合了基于竞争... 为了缓解城市快速路拥堵和尾气排放问题,提出了基于竞争结构和深度循环Q网络的改进非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ based on dueling deep recurrent Q network, DRQN-NSGA-Ⅱ).该算法结合了基于竞争结构的深度Q网络(dueling deep Q network, Dueling DQN)、深度循环Q网络(deep recurrent Q network, DRQN)和NSGA-Ⅱ算法,将Dueling DRQN-NSGA-Ⅱ算法用于匝道控制问题.除了考虑匝道车辆汇入以提高快速路通行效率外,还考虑了环境和能源指标,将尾气排放和燃油消耗作为评价指标.除了与无控制情况及其他算法进行比较之外, Dueling DRQN-NSGA-Ⅱ还与NSGA-Ⅱ算法进行了比较.实验结果表明:与无控制情况相比,本算法能有效改善路网通行效率、缓解环境污染、减少能源损耗;相对于无控制情况,总花费时间(total time spent, TTS)减少了16.14%,总尾气排放(total emissions, TE)减少了9.56%,总燃油消耗(total fuel consumption, TF)得到了43.49%的改善. 展开更多
关键词 匝道控制 基于竞争结构的深度Q网络 深度循环Q网络 非支配排序遗传算法
在线阅读 下载PDF
基于DRQN的视觉SLAM参数自适应调整 被引量:1
12
作者 陈青梅 秦进 +2 位作者 黄仁婧 崔虎 黄初华 《计算机工程与设计》 北大核心 2022年第11期3235-3242,共8页
为解决传统视觉SLAM算法中的参数调整问题,提出一种基于深度循环Q网络的视觉SLAM参数自适应调整方法。筛选视觉SLAM参数构建动作空间;采用地标点的协方差矩阵描述视觉定位的不确定性,用地标点的不确定性构建奖励函数;参数智能体通过ε-g... 为解决传统视觉SLAM算法中的参数调整问题,提出一种基于深度循环Q网络的视觉SLAM参数自适应调整方法。筛选视觉SLAM参数构建动作空间;采用地标点的协方差矩阵描述视觉定位的不确定性,用地标点的不确定性构建奖励函数;参数智能体通过ε-greedy策略选择Q值最大的动作作用于视觉SLAM环境,根据环境的反馈更新网络参数。EuRoC和TUM-VI数据集上的实验结果表明,该方法提高了室内场景下的位姿轨迹精度,避免了复杂的参数调整过程。 展开更多
关键词 视觉SLAM 深度循环Q网络 ε-greedy策略 不确定度 参数自适应调整
在线阅读 下载PDF
DRNN在激光多普勒测振仪测声系统中的应用 被引量:4
13
作者 白涛 吴谨 +2 位作者 李明磊 万磊 李丹阳 《激光技术》 CAS CSCD 北大核心 2019年第1期109-114,共6页
为了降低激光多普勒测振仪在测声过程中给语音信号中引入的噪声,采用深度循环神经网络语音信号去噪的方法,对从激光多普勒测声系统采集回来的语音信号做降噪处理,并进行了理论分析和实验验证。结果表明,利用层数为1层~3层、每层神经元... 为了降低激光多普勒测振仪在测声过程中给语音信号中引入的噪声,采用深度循环神经网络语音信号去噪的方法,对从激光多普勒测声系统采集回来的语音信号做降噪处理,并进行了理论分析和实验验证。结果表明,利用层数为1层~3层、每层神经元个数为1024的深度循环神经网络,对-6dB~6dB信噪比的语音信号进行处理,随着层数的增加,语音信号的质量在多项评价指标上达到8dB~12dB的提升;深度循环神经网络可以有效对激光多普勒测声系统采集的语音信号进行降噪处理。该研究对提升语音信号的质量有着实际意义。 展开更多
关键词 激光技术 激光多普勒测振仪 语音信号去噪 深度循环神经网络
在线阅读 下载PDF
基于多篇章多答案的阅读理解系统 被引量:1
14
作者 刘家骅 韦琬 +1 位作者 陈灏 杜彦涛 《中文信息学报》 CSCD 北大核心 2018年第11期103-111,共9页
机器阅读理解任务一直是自然语言处理领域的重要问题。2018机器阅读理解技术竞赛提供了一个基于真实场景的大规模中文阅读理解数据集,对中文阅读理解系统提出了很大的挑战。为了应对这些挑战,我们在数据预处理、特征表示、模型选择、损... 机器阅读理解任务一直是自然语言处理领域的重要问题。2018机器阅读理解技术竞赛提供了一个基于真实场景的大规模中文阅读理解数据集,对中文阅读理解系统提出了很大的挑战。为了应对这些挑战,我们在数据预处理、特征表示、模型选择、损失函数的设定和训练目标的选择等方面基于以往的工作做出了对应的设计和改进,构建出一个最先进的中文阅读理解系统。我们的系统在正式测试集ROUGE-L和BLEU-4上分别达到了63.38和59.23,在105支提交最终结果的队伍里面取得了第一名。 展开更多
关键词 机器阅读理解 问答系统 深度循环神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部