期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种股票市场的深度学习复合预测模型 被引量:11
1
作者 张永安 颜斌斌 《计算机科学》 CSCD 北大核心 2020年第11期255-267,共13页
深度学习能够从大量原始数据中提取高级抽象特征而不依赖于先验知识,对于金融市场预测具有潜在的吸引力。基于"分解—重构—综合"的思想,提出了一种全新的深度学习预测方法论,并在此基础上构建了一种股票市场单步向前的深度... 深度学习能够从大量原始数据中提取高级抽象特征而不依赖于先验知识,对于金融市场预测具有潜在的吸引力。基于"分解—重构—综合"的思想,提出了一种全新的深度学习预测方法论,并在此基础上构建了一种股票市场单步向前的深度学习复合预测模型——CEEMD-LSTM。在此模型中,序列平稳化分解模块的CEEMD能将时间序列中不同尺度的波动或趋势逐级分解出来,产生一系列不同特征尺度的本征模态函数(Intrinsic Mode Function,IMF);采用深度学习中适合处理时间序列的长短期记忆网络(Long-Short Term Memory,LSTM)分别对每个IMF与趋势项提取高级、深度特征,并预测下一交易日收盘价的收益率;最后,综合各个IMF分量以及趋势项的预测值,得到最终的预测值。基于3类不同发达程度股票市场的股票指数的实证结果表明,此模型在预测的两个维度即预测误差与预测命中率上均要优于其他参照模型。 展开更多
关键词 深度学习 深度学习预测方法论 股票市场预测 长短期记忆网络 互补集成经验模态分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部