期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于剪枝算法优化的轻量级深度学习网络算法
1
作者
仇丹丹
《计算机科学》
北大核心
2025年第S2期194-200,共7页
随着目前计算机技术的不断发展,很多计算机技术都使用了智能算法来提高自身的智能化水平。其中,轻量化深度学习网络算法是使用频率较高的一种,很多领域中都使用了该算法来提高自身的生产效率。但现在的轻量级深度学习网络算法还存在算...
随着目前计算机技术的不断发展,很多计算机技术都使用了智能算法来提高自身的智能化水平。其中,轻量化深度学习网络算法是使用频率较高的一种,很多领域中都使用了该算法来提高自身的生产效率。但现在的轻量级深度学习网络算法还存在算法规模大、特征提取效果差等缺点。为了解决上述问题,文中以深度网络学习算法中的一维卷积神经网络算法为研究对象,利用剪枝算法对卷积神经网络算法进行轻量化设计,以期优化算法的性能。首先将轻量化后的卷积神经网络算法与传统的算法进行对比,结果显示,轻量化算法的速度提升了近3倍,达到了3.7 bps,与此同时,算法的存储需求和能源消耗大幅度降低,能源消耗仅有12.3%。然后,将剪枝算法轻量化后的卷积神经网络学习算法与其他轻量化算法进行对比,结果表明,该算法对不同数据的平均检测精度均为95%以上,远高于其他算法,该算法的特征提取效果也显著优于其他算法,且该算法的运行耗时仅需4.98 ms,远低于其他算法。由上述结果可知,所提出的剪枝算法轻量化设计方法可以提高深度学习网络算法的各项性能。
展开更多
关键词
深度学习网络算法
剪枝
算法
轻量化
卷积神经
网络
在线阅读
下载PDF
职称材料
基于改进DQN强化学习算法的弹性光网络资源分配研究
被引量:
4
2
作者
尚晓凯
韩龙龙
翟慧鹏
《光通信技术》
2023年第5期12-15,共4页
针对光网络资源分配中频谱资源利用率不高的问题,提出了一种改进的深度Q网络(DQN)强化学习算法。该算法基于ε-greedy策略,根据动作价值函数和状态价值函数的差异来设定损失函数,并不断调整ε值,以改变代理的探索率。通过这种方式,实现...
针对光网络资源分配中频谱资源利用率不高的问题,提出了一种改进的深度Q网络(DQN)强化学习算法。该算法基于ε-greedy策略,根据动作价值函数和状态价值函数的差异来设定损失函数,并不断调整ε值,以改变代理的探索率。通过这种方式,实现了最优的动作值函数,并较好地解决了路由与频谱分配问题。此外,采用了不同的经验池取样方法,以提高迭代训练的收敛速度。仿真结果表明:改进DQN强化学习算法不仅能够使弹性光网络训练模型快速收敛,当业务量为300 Erlang时,比DQN算法频谱资源利用率提高了10.09%,阻塞率降低了12.41%,平均访问时延减少了1.27 ms。
展开更多
关键词
弹性光
网络
改进
深度
Q
网络
强化
学习
算法
资源分配
在线阅读
下载PDF
职称材料
题名
基于剪枝算法优化的轻量级深度学习网络算法
1
作者
仇丹丹
机构
濮阳职业技术学院数学与信息工程学院
出处
《计算机科学》
北大核心
2025年第S2期194-200,共7页
基金
河南省2020年重点研发与推广专项(科技攻关)项目(212102210081)。
文摘
随着目前计算机技术的不断发展,很多计算机技术都使用了智能算法来提高自身的智能化水平。其中,轻量化深度学习网络算法是使用频率较高的一种,很多领域中都使用了该算法来提高自身的生产效率。但现在的轻量级深度学习网络算法还存在算法规模大、特征提取效果差等缺点。为了解决上述问题,文中以深度网络学习算法中的一维卷积神经网络算法为研究对象,利用剪枝算法对卷积神经网络算法进行轻量化设计,以期优化算法的性能。首先将轻量化后的卷积神经网络算法与传统的算法进行对比,结果显示,轻量化算法的速度提升了近3倍,达到了3.7 bps,与此同时,算法的存储需求和能源消耗大幅度降低,能源消耗仅有12.3%。然后,将剪枝算法轻量化后的卷积神经网络学习算法与其他轻量化算法进行对比,结果表明,该算法对不同数据的平均检测精度均为95%以上,远高于其他算法,该算法的特征提取效果也显著优于其他算法,且该算法的运行耗时仅需4.98 ms,远低于其他算法。由上述结果可知,所提出的剪枝算法轻量化设计方法可以提高深度学习网络算法的各项性能。
关键词
深度学习网络算法
剪枝
算法
轻量化
卷积神经
网络
Keywords
Deep learning network algorithm
Pruning algorithm
Lightweight
CNN
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于改进DQN强化学习算法的弹性光网络资源分配研究
被引量:
4
2
作者
尚晓凯
韩龙龙
翟慧鹏
机构
国家计算机网络与信息安全管理中心河南分中心
出处
《光通信技术》
2023年第5期12-15,共4页
基金
国家计算机网络与信息安全技术研究专项(242研究计划)(2022Q66)资助
国家自然科学基金项目(批准号:61901159)资助。
文摘
针对光网络资源分配中频谱资源利用率不高的问题,提出了一种改进的深度Q网络(DQN)强化学习算法。该算法基于ε-greedy策略,根据动作价值函数和状态价值函数的差异来设定损失函数,并不断调整ε值,以改变代理的探索率。通过这种方式,实现了最优的动作值函数,并较好地解决了路由与频谱分配问题。此外,采用了不同的经验池取样方法,以提高迭代训练的收敛速度。仿真结果表明:改进DQN强化学习算法不仅能够使弹性光网络训练模型快速收敛,当业务量为300 Erlang时,比DQN算法频谱资源利用率提高了10.09%,阻塞率降低了12.41%,平均访问时延减少了1.27 ms。
关键词
弹性光
网络
改进
深度
Q
网络
强化
学习
算法
资源分配
Keywords
elastic optical network
improved reinforcement learning algorithm for deep Q network
resource allocation
分类号
TN929.1 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于剪枝算法优化的轻量级深度学习网络算法
仇丹丹
《计算机科学》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于改进DQN强化学习算法的弹性光网络资源分配研究
尚晓凯
韩龙龙
翟慧鹏
《光通信技术》
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部