-
题名人工设计及深度学习在抗菌肽改造策略上的研究进展
- 1
-
-
作者
徐浩然
毕重朋
王家俊
单安山
冯兴军
-
机构
东北农业大学动物科学技术学院
-
出处
《食品与发酵工业》
北大核心
2025年第13期362-368,407,共8页
-
基金
黑龙江省重点研发计划项目(2024ZXDXB58)。
-
文摘
近年来,多重耐药病原体引发的感染显著增加,抗生素耐药性已成为全球公共卫生领域的重大挑战。抗菌肽因其独特的作用机制,被认为是对抗抗生素耐药性的潜在解决方案。然而,其在临床应用中仍面临稳定性差、活性不足及高生产成本等障碍。为此,文中总结了多种改造策略,包括结构优化、靶向设计、活性增强以及生产工艺改进。同时,深度学习技术的引入,为抗菌肽序列的设计与优化提供了高效的新途径,通过预测抗菌活性和优化参数显著提升研发效率,为抗菌肽的开发与应用带来了新的希望。
-
关键词
抗菌肽
深度学习预测模型
深度学习生成模型
抗菌肽改造策略
多领域结合
-
Keywords
antimicrobial peptide(AMPs)
deep learning predictive model
deep learning generative model
antimicrobial peptide modification strategy
multi-disciplinary integration
-
分类号
TQ464
[化学工程—制药化工]
-
-
题名基于自动编码器隐空间分类的建模侧信道分析
- 2
-
-
作者
姬宇航
张驰
陆相君
谷大武
-
机构
上海交通大学电子信息与电气工程学院
密码科学技术全国重点实验室
-
出处
《密码学报》
CSCD
2023年第4期836-851,共16页
-
基金
国家自然科学基金(62072307)。
-
文摘
侧信道分析是现实世界密码系统的主要威胁之一,建模侧信道分析是一类重要的侧信道分析方法,深度学习技术的引入可拓宽建模侧信道分析的应用场景、提升分析效率.自动编码器(auto-encoder,AE)与变分自动编码器(variational AE,VAE)是被广泛研究的深度学习模型,本文将它们引入建模侧信道分析,提出了基于AE与基于VAE隐空间分类的建模侧信道分析方法,并从生成模型的角度对这两种方法的可行性进行了分析.AE和VAE中间产生的隐空间特征可视为侧信道曲线的低维生成特征,提出的两种方法通过训练相应的AE和VAE来提取出能表征原始侧信道曲线的隐空间特征,并通过VAE探讨了隐空间分布为高斯分布时对建模分析效率的影响.随后提出了三种隐空间特征分类策略:基于欧氏距离的分类策略、基于KL散度的分类策略以及基于支持向量机的分类策略,这些策略可对提取出的隐空间特征进行分类,从而完成建模侧信道分析.在DPAv4.1与增加了高斯噪音的ASCAD数据集上的实验结果表明,基于AE和VAE的建模侧信道分析方法使用三种分类策略的攻击效果均大幅度优于池化模板.从猜测熵的角度看,基于VAE的方法仅需10条DPAv4.1的曲线与1660条加了噪音的ASCAD曲线即可使得两者猜测熵为0,而模板攻击则分别分别需要84条和3899条曲线,效率提升分别达到了88.1%与54.7%.这说明在建模侧信道分析的场景下,VAE有着很好的应用潜能.
-
关键词
建模侧信道分析
自动编码器
变分自动编码器
隐空间分类
深度学习生成模型
-
Keywords
profiled side-channel analysis
auto-encoders
variational auto-encoders
latent space classification
deep learning generative models
-
分类号
TP309.7
[自动化与计算机技术—计算机系统结构]
-