期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多智能体安全深度强化学习的电压控制 被引量:2
1
作者 曾仪 周毅 +3 位作者 陆继翔 周良才 唐宁恺 李红 《中国电力》 北大核心 2025年第2期111-117,共7页
针对分布式光伏在配电网中的高比例接入带来的电压越限和波动问题,提出了一种基于多智能体安全深度强化学习的电压控制方法。将含光伏的电压控制建模为分布式部分可观马尔可夫决策过程。在深度策略网络中引入安全层进行智能体设计,同时... 针对分布式光伏在配电网中的高比例接入带来的电压越限和波动问题,提出了一种基于多智能体安全深度强化学习的电压控制方法。将含光伏的电压控制建模为分布式部分可观马尔可夫决策过程。在深度策略网络中引入安全层进行智能体设计,同时在智能体奖励函数定义时,使用基于传统优化模型电压约束的电压屏障函数。在IEEE 33节点算例上的测试结果表明:所提方法在光伏高渗透率场景下可生成符合安全约束的电压控制策略,可用于在线辅助调度员进行实时决策。 展开更多
关键词 无功电压控制 安全深度强化学习 多智能体
在线阅读 下载PDF
基于双深度网络的安全深度强化学习方法 被引量:27
2
作者 朱斐 吴文 +1 位作者 伏玉琛 刘全 《计算机学报》 EI CSCD 北大核心 2019年第8期1812-1826,共15页
深度强化学习利用深度学习感知环境信息,使用强化学习求解最优决策,是当前人工智能领域的主要研究热点之一.然而,大部分深度强化学习的工作未考虑安全问题,有些方法甚至特意加入带随机性质的探索来扩展采样的覆盖面,以期望获得更好的近... 深度强化学习利用深度学习感知环境信息,使用强化学习求解最优决策,是当前人工智能领域的主要研究热点之一.然而,大部分深度强化学习的工作未考虑安全问题,有些方法甚至特意加入带随机性质的探索来扩展采样的覆盖面,以期望获得更好的近似最优解.可是,不受安全控制的探索性学习很可能会带来重大风险.针对上述问题,提出了一种基于双深度网络的安全深度强化学习(Dual Deep Network Based Secure Deep Reinforcement Learning,DDN-SDRL)方法.DDN-SDRL方法设计了危险样本经验池和安全样本经验池,其中危险样本经验池用于记录探索失败时的临界状态和危险状态的样本,而安全样本经验池用于记录剔除了临界状态和危险状态的样本.DDN-SDRL方法在原始网络模型上增加了一个深度Q网络来训练危险样本,将高维输入编码为抽象表示后再解码为特征;同时提出了惩罚项描述临界状态,并使用原始网络目标函数和惩罚项计算目标函数.DDN-SDRL方法以危险样本经验池中的样本为输入,使用深度Q网络训练得到惩罚项.由于DDN-SDRL方法利用了临界状态、危险状态及安全状态信息,因此Agent可以通过避开危险状态的样本、优先选取安全状态的样本来提高安全性.DDN-SDRL方法具有通用性,能与多种深度网络模型结合.实验验证了方法的有效性. 展开更多
关键词 强化学习 深度强化学习 深度Q网络 安全深度强化学习 安全人工智能 经验回放
在线阅读 下载PDF
面向主动配电网的安全多智能体深度强化学习电压优化控制 被引量:6
3
作者 梅铭洋 寇鹏 +1 位作者 张智豪 梁得亮 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第12期157-167,共11页
针对主动配电网电压优化控制中模型不确定性和通信代价大的问题,提出了一种基于灵敏度矩阵安全的多智能体深度强化学习(SMS-MADRL)算法。该算法利用安全深度强化学习,应对主动配电网的固有不确定性,并采用多智能体结构实现通信代价较小... 针对主动配电网电压优化控制中模型不确定性和通信代价大的问题,提出了一种基于灵敏度矩阵安全的多智能体深度强化学习(SMS-MADRL)算法。该算法利用安全深度强化学习,应对主动配电网的固有不确定性,并采用多智能体结构实现通信代价较小的分布式控制。首先,将电压优化控制问题描述为受约束的马尔可夫博弈(CMG);然后,对无功功率进行适当修改,通过分析节点电压的变化得到灵敏度矩阵,进而与主动配电网环境进行交互,训练出若干可以独立给出最优无功功率指令的智能体。与现有多智能体深度强化学习算法相比,该算法的优点在于给智能体的动作网络增添了基于灵敏度矩阵的安全层,在智能体的训练和执行阶段保证了主动配电网的电压安全性。在IEEE 33节点系统上的仿真结果表明:所提出的算法不仅能够满足电压约束,而且相较于多智能体深度确定性策略梯度(MADDPG)算法,网络损耗减少了4.18%,控制代价减少了70.5%。该研究可为主动配电网的电压优化控制提供理论基础。 展开更多
关键词 主动配电网 电压优化控制 多智能体深度强化学习 安全深度强化学习
在线阅读 下载PDF
机器学习系统的隐私和安全问题综述 被引量:28
4
作者 何英哲 胡兴波 +2 位作者 何锦雯 孟国柱 陈恺 《计算机研究与发展》 EI CSCD 北大核心 2019年第10期2049-2070,共22页
人工智能已经渗透到生活的各个角落,给人类带来了极大的便利.尤其是近年来,随着机器学习中深度学习这一分支的蓬勃发展,生活中的相关应用越来越多.不幸的是,机器学习系统也面临着许多安全隐患,而机器学习系统的普及更进一步放大了这些风... 人工智能已经渗透到生活的各个角落,给人类带来了极大的便利.尤其是近年来,随着机器学习中深度学习这一分支的蓬勃发展,生活中的相关应用越来越多.不幸的是,机器学习系统也面临着许多安全隐患,而机器学习系统的普及更进一步放大了这些风险.为了揭示这些安全隐患并实现一个强大的机器学习系统,对主流的深度学习系统进行了调查.首先设计了一个剖析深度学习系统的分析模型,并界定了调查范围.调查的深度学习系统跨越了4个领域——图像分类、音频语音识别、恶意软件检测和自然语言处理,提取了对应4种类型的安全隐患,并从复杂性、攻击成功率和破坏等多个维度对其进行了表征和度量.随后,调研了针对深度学习系统的防御技术及其特点.最后通过对这些系统的观察,提出了构建健壮的深度学习系统的建议. 展开更多
关键词 机器学习安全 深度学习安全 攻防竞赛 对抗攻击 成员推理攻击 隐私保护
在线阅读 下载PDF
自动驾驶系统中视觉感知模块的安全测试 被引量:4
5
作者 吴昊 王浩 +3 位作者 苏醒 李明昊 许封元 仲盛 《计算机研究与发展》 EI CSCD 北大核心 2022年第5期1133-1147,共15页
近年来,基于深度学习的视觉感知技术的发展极大地促进了车联网领域中自动驾驶的繁荣,然而自动驾驶系统的安全问题频出引发了人们对自动驾驶未来的担忧.由于深度学习系统的行为缺乏可解释性,测试基于深度学习的自动驾驶系统的安全性极具... 近年来,基于深度学习的视觉感知技术的发展极大地促进了车联网领域中自动驾驶的繁荣,然而自动驾驶系统的安全问题频出引发了人们对自动驾驶未来的担忧.由于深度学习系统的行为缺乏可解释性,测试基于深度学习的自动驾驶系统的安全性极具挑战.目前,已有针对自动驾驶场景的安全性测试工作被提出,但这些方法在测试场景生成、安全问题检测和安全问题解释等方面仍存在不足之处.针对基于视觉感知的自动驾驶系统,设计开发了一种场景驱动的、可解释性强的、运行高效的安全性测试系统.提出了一种能够平衡真实性与丰富度的场景描述方法,并利用实时渲染引擎生成可以用于驾驶系统安全性测试的场景;设计了一种高效的针对非线性系统的场景搜索算法,其可以针对不同的待测试系统动态调整搜索方案;同时,还设计了一个故障分析器,自动化分析定位待测试系统的安全性缺陷成因.复现了现有基于实时渲染引擎的动态自动驾驶测试系统,并同时使用本系统和复现系统对CILRS系统和CIL系统进行安全测试,实验结果表明相同时间下该工作的安全问题发现率是复现的场景驱动的动态测试方法的1.4倍.进一步的实验表明:可以分别为具有代表性的深度学习自动驾驶系统CIL和CILRS,从旷野、乡村与城市的3类环境中动态生成的共3000个场景中,搜索到1939个和1671个造成故障的场景,并且每个故障场景的搜索时间平均为16.86 s.分析器从统计的角度判断出CILRS系统容易导致故障的区域在道路两侧,雨天和红色或黄色物体更易导致该自动驾驶系统发生故障. 展开更多
关键词 车联网 视觉感知模块 深度学习安全 黑盒测试 场景搜索
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部