期刊文献+
共找到6,399篇文章
< 1 2 250 >
每页显示 20 50 100
基于从头训练模式深度学习卷积神经网络模型评估急性肺栓塞的价值 被引量:2
1
作者 郭润财 王蕾 +3 位作者 黄振国 席霖枫 张帅 刘敏 《实用医学杂志》 CAS 北大核心 2023年第22期2979-2983,共5页
目的分析基于从头训练模式深度学习-卷积神经网络模型[the deep learning convolutional neural network model trained from scratch,DL-CNN(fs)]的人工智能算法评估急性肺动脉血栓栓塞(acute pulmonary thromboembolism,APE)的价值。... 目的分析基于从头训练模式深度学习-卷积神经网络模型[the deep learning convolutional neural network model trained from scratch,DL-CNN(fs)]的人工智能算法评估急性肺动脉血栓栓塞(acute pulmonary thromboembolism,APE)的价值。方法回顾性纳入214例可疑APE行CT肺动脉造影(CTPA)的住院患者,包括急性肺动脉血栓栓塞137例,阴性77例。放射科医师根据CTPA图像判断有无APE,并计算Qanadli评分、Mastora评分和其他CTPA参数。采用DL-CNN(fs)训练网络模型自动检测栓子的分布及容积。评估DL-CNN(fs)模型测量血栓分布的价值,计算血栓负荷与Qanadli评分、Mastora评分和其他CTPA参数的相关性。结果DL-CNN(fs)测算的中心肺动脉栓子敏感度、特异度、感兴趣区曲线下面积(AUC)分别为100%、16.8%、0.584(95%CI,0.508~0.661);DL-CNN(fs)测算的外周肺动脉栓子敏感度、特异度、AUC均较高(R1-R9,60.8%~95.2%,67.9%~87.1%,0.740~0.844;L1-L10,64.6%~93.4%,62.7%~83.1%,0.732~0.791)。DL-CNN(fs)测算的栓子体积与Qanadli score肺栓塞指数显著正相关(r=0.867,P<0.001),与Mastora score肺栓塞指数显著正相关(r=0.854,P<0.001),与右心室及左心室最大横径比、右心室及左心室最大面积比呈正相关(r=0.549,0.559,P<0.01)。结论DL-CNN(fs)模型检测外周肺动脉栓子具有较高的价值,对中心肺动脉栓子诊断特异度有待进一步提高。DL-CNN(fs)模型自动提供APE患者的栓子体积,可以一定程度反映栓塞程度及右心功能,能够辅助医生对于APE患者血栓负荷及危险分层的快速评估。 展开更多
关键词 深度学习 卷积神经网络 急性肺动脉血栓栓塞 计算机断层成像肺动脉造影
在线阅读 下载PDF
基于深度学习卷积神经网络的地震数据随机噪声去除 被引量:78
2
作者 韩卫雪 周亚同 池越 《石油物探》 EI CSCD 北大核心 2018年第6期862-869,877,共9页
为了有效去除地震数据随机噪声,提出了一种基于卷积神经网络(CNN)的地震数据随机噪声去除算法。算法的关键在于构建一个适用于地震数据去噪的CNN,包含输入层、卷积层、激活层、输出层等。该CNN以含噪地震数据作为输入层,由多个卷积层提... 为了有效去除地震数据随机噪声,提出了一种基于卷积神经网络(CNN)的地震数据随机噪声去除算法。算法的关键在于构建一个适用于地震数据去噪的CNN,包含输入层、卷积层、激活层、输出层等。该CNN以含噪地震数据作为输入层,由多个卷积层提取并处理地震数据,激活层采用修正线性单元(ReLU)获取地震数据波动特征,再借助归一化层加速网络训练收敛速度。CNN通过残差学习获得随机噪声并由网络输出层输出。分别采用小波变换、双树复小波变换、曲波变换以及CNN对实际叠前海上地震数据、叠后陆地数据及复杂陆地叠后数据进行去噪,实验结果表明,CNN能有效去除随机噪声,且与常规去噪算法相比具有更强的去噪能力,验证了算法的可行性和有效性。 展开更多
关键词 卷积神经网络 深度学习 地震数据 随机噪声 去噪
在线阅读 下载PDF
基于CS优化深度学习卷积神经网络的目标检测算法 被引量:7
3
作者 谌颃 孙道宗 《机床与液压》 北大核心 2020年第6期187-192,共6页
目前对于形状比较复杂且密集摆放的工件,传统的工业机器人视觉分拣技术已经无法有效检测和识别。因此,为了提高生产线上分拣工件检测的准确率,提出了一种基于布谷鸟搜索算法(Cuckoo Search,CS)优化深度学习卷积神经网络(Convolutional N... 目前对于形状比较复杂且密集摆放的工件,传统的工业机器人视觉分拣技术已经无法有效检测和识别。因此,为了提高生产线上分拣工件检测的准确率,提出了一种基于布谷鸟搜索算法(Cuckoo Search,CS)优化深度学习卷积神经网络(Convolutional Neural Network,CNN)的目标检测算法。首先对视觉分拣系统的组成进行了分析。然后采用经典的Faster R-CNN的模型结构来实现目标检测,并将CS优化算法应用到CNN模型的参数训练中,解决了反向传播的局部最优问题,同时提高了迭代速度。工件检测实验结果表明:相比于传统的CNN模型,提出CS-CNN模型具有更好的目标检测的准确率,提高了网络的收敛速度。 展开更多
关键词 深度学习 卷积神经网络 工业机器人 视觉分拣 目标检测 布谷鸟搜索算法
在线阅读 下载PDF
基于卷积神经网络的图像分类深度学习模型综述 被引量:4
4
作者 刘鸿达 孙旭辉 +2 位作者 李沂滨 韩琳 张宇 《计算机工程与应用》 北大核心 2025年第11期1-21,共21页
使用神经网络模型进行图像分类任务一直是非常重要的研究方向,随着深度学习技术的发展,对神经网络模型的要求也越来越高。在识别率高的同时,对模型的参数量、训练时间也都有较高的要求。卷积神经网络一直是深度学习中针对图像处理的主... 使用神经网络模型进行图像分类任务一直是非常重要的研究方向,随着深度学习技术的发展,对神经网络模型的要求也越来越高。在识别率高的同时,对模型的参数量、训练时间也都有较高的要求。卷积神经网络一直是深度学习中针对图像处理的主流方法,主要介绍基于卷积神经网络的分类模型的发展历程,分析其不同阶段各个模型的搭建思路;介绍Transformer与卷积神经网络结合的相关模型以及各模型在其他领域的应用情况。最后,对卷积神经网络的发展进行了探讨。 展开更多
关键词 卷积神经网络 深度学习 图像分类 TRANSFORMER
在线阅读 下载PDF
融合深度强化学习的卷积神经网络联合压缩方法
5
作者 马祖鑫 崔允贺 +4 位作者 秦永彬 申国伟 郭春 陈意 钱清 《计算机工程与应用》 北大核心 2025年第6期210-219,共10页
随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果... 随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果,影响压缩后的模型性能。针对以上问题,提出一种基于深度强化学习的神经网络联合压缩方法——CoTrim。CoTrim同时执行通道剪枝与权值量化,利用深度强化学习算法搜索出全局最优的剪枝与量化策略,以平衡剪枝与量化对网络性能的影响。在CIFAR-10数据集上对VGG和ResNet进行实验,实验表明,对于常见的单分支卷积和残差卷积结构,CoTrim能够在精度损失仅为2.49个百分点的情况下,将VGG16的模型大小压缩至原来的1.41%。在复杂数据集Imagenet-1K上对紧凑网络MobileNet和密集连接网络DenseNet进行实验,实验表明,对于深度可分离卷积结构以及密集连接结构,CoTrim依旧能保证精度损失在可接受范围内将模型压缩为原始大小的1/5~1/8。 展开更多
关键词 卷积神经网络 深度强化学习 模型压缩 通道剪枝 权值量化 边缘智能
在线阅读 下载PDF
融合深度强化学习和图卷积神经网络的类集成测试序列生成方法
6
作者 王晨源 张艳梅 袁冠 《计算机科学》 北大核心 2025年第6期58-65,共8页
类集成测试确保软件系统中多个类之间正常交互和协作,合理的类集成测试序列可以降低测试成本。为了降低程序中类集成测试序列的测试成本,国内外研究人员提出了多种类集成测试序列生成方法,但已有的方法生成的类集成测试序列的测试成本... 类集成测试确保软件系统中多个类之间正常交互和协作,合理的类集成测试序列可以降低测试成本。为了降低程序中类集成测试序列的测试成本,国内外研究人员提出了多种类集成测试序列生成方法,但已有的方法生成的类集成测试序列的测试成本过高。针对上述问题,提出一种融合深度强化学习和图卷积神经网络的类集成测试序列生成方法。该方法首先将图卷积神经网络作为深度强化学习中的神经网络部分,并对智能体的网络结构和环境状态等方面进行改进,使环境和智能体可以基于图结构的数据进行交互;然后通过设计强化学习中的动作空间和奖励函数等基本要素,完成类集成测试序列的生成场景;最终实现智能体在不断地学习和尝试中得到最佳的类集成测试序列。实验结果表明,在以总体测试桩复杂度作为度量指标时,该方法能够在一定程度上降低生成类集成测试序列所需的测试桩代价。 展开更多
关键词 类集成测试序列 深度强化学习 卷积神经网络 测试桩 测试桩复杂度
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
7
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:2
8
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
融合卷积深度置信网络与可拓神经网络的齿轮故障诊断方法
9
作者 王体春 夏天 费叶琦 《计算机集成制造系统》 北大核心 2025年第6期2178-2193,共16页
针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入... 针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入软池化层优化的膨胀卷积深度置信网络进行特征提取,并采用注意力机制技术加权融合多通道特征;利用侧距优化的加权可拓神经网络完成齿轮故障分类。最后,通过公开数据集进行验证和对比分析表明,该模型相比卷积神经网络模型、深度置信网络模型、高斯卷积深度置信网络模型等具有更高的识别精度,在噪声干扰和变工况条件下具有良好的故障诊断性能。 展开更多
关键词 深度学习 卷积深度置信网络 可拓神经网络 故障诊断
在线阅读 下载PDF
基于车载成像与深度卷积神经网络的地表残膜识别方法 被引量:1
10
作者 吕继东 翟志强 +3 位作者 孟庆建 苗璐鹏 陈悦 张若宇 《农业机械学报》 北大核心 2025年第5期26-37,70,共13页
针对残膜回收机实际作业过程中存在多种相似非目标场景干扰,目标场景图像背景复杂且地表残膜尺寸小、破碎度大、无固定轮廓导致残膜覆盖率难以准确评估的问题,提出基于车载成像和深度卷积神经网络的地表残膜识别方法。构建了一种基于多... 针对残膜回收机实际作业过程中存在多种相似非目标场景干扰,目标场景图像背景复杂且地表残膜尺寸小、破碎度大、无固定轮廓导致残膜覆盖率难以准确评估的问题,提出基于车载成像和深度卷积神经网络的地表残膜识别方法。构建了一种基于多重特征增强的SE-DenseNet-DC分类模型,在DenseNet121模型每个稠密块的非线性组合函数前后引入通道注意力机制增强有效特征信息通道的权重,然后引入多尺度串联空洞卷积替换原始模型第1层卷积提升感受野并保持细节敏感度,实现目标场景图像的有效提取;构建了一种基于细节信息增强和多尺度特征融合的CDC-TransUnet分割模型,在TransUnet模型的编码器部分引入CBAM模块提取更加细微和精确的全局特征,在跳跃连接部分引入DAB模块融合多尺度语义信息并弥补编码和解码阶段特征之间的语义差距,然后在解码器部分引入CCAF模块减少上采样丢失的细节信息,实现目标场景图像复杂背景中地表残膜的精准分割。试验结果表明,SE-DenseNet-DC分类模型对目标场景图像的分类准确率、查准率、查全率和F1值分别达到96.26%、91.54%、94.49%和92.83%,CDC-TransUnet分割模型对目标场景图像中地表残膜分割平均交并比(MIOU)达到77.17%,模型预测残膜覆盖率与人工标注残膜覆盖率决定系数(R^(2))为0.92,均方根误差(RMSE)为0.23%,平均相对误差为2.95%,单幅图像评估时间平均为0.54 s。本文方法在残膜回收机回收后地表残膜覆盖率监测评估中具有较高的准确率和较快的推理速度,为残膜回收机回收质量实时准确评估提供技术支撑。 展开更多
关键词 棉田 残膜回收 车载成像 深度卷积神经网络 识别
在线阅读 下载PDF
基于深度卷积神经网络的雷达伺服转台消隙策略
11
作者 鲍子威 吴影生 房景仕 《雷达科学与技术》 北大核心 2025年第1期101-108,118,共9页
精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐... 精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐渐变差,影响雷达跟踪精度。针对此缺陷,本文提出一种基于深度卷积神经网络(DCNN)的精密雷达伺服转台消隙策略,通过采集位置闭环传动轴振动数据,利用连续小波变换(CWT)得到时频图,作为DCNN训练输入,训练后得到识别模型,最后根据模型识别出伺服转台传动机构磨损程度来调整双电机消隙控制的偏置电流和拐点电流,通过对比实验验证了调整后消隙效果优于传统消隙方式,极大提高装备运行的可靠性,降低雷达伺服转台的维护成本。 展开更多
关键词 深度卷积神经网络 精密雷达伺服转台 双电机消隙 可靠性
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
12
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
13
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断 被引量:1
14
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗 被引量:2
15
作者 魏乐 李承霖 +1 位作者 房方 刘渝斌 《电网技术》 北大核心 2025年第1期366-372,I0113-I0115,共10页
飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵... 飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵武电厂的飞轮运行数据进行预处理,并使用对抗生成网络进行小样本扩充;然后基于卷积神经网络建立损耗模型,使用改进的麻雀算法对模型超参数进行优化,并通过对比验证了该模型的优越性;最后通过仿真实验证明了该模型能够优化飞轮储能系统的出力,降低飞轮损耗。 展开更多
关键词 飞轮储能系统损耗 小样本学习 卷积神经网络 麻雀搜索算法 LOGISTIC混沌映射
在线阅读 下载PDF
基于深度卷积神经网络的产品无损分级检测方法
16
作者 孙雯 张龙青 《激光杂志》 北大核心 2025年第2期251-256,共6页
为实现自动化生产、优化产品分级,提高生产效率和产品质量控制水平,研究基于深度卷积神经网络的产品无损分级检测方法。依据激光吸收光谱技术原理,设计一种近红外激光吸收光谱采集装置,利用该装置采集待测产品的近红外激光吸收光谱;采用... 为实现自动化生产、优化产品分级,提高生产效率和产品质量控制水平,研究基于深度卷积神经网络的产品无损分级检测方法。依据激光吸收光谱技术原理,设计一种近红外激光吸收光谱采集装置,利用该装置采集待测产品的近红外激光吸收光谱;采用Savitzky-Golay方法对采集到的吸收光谱实施预处理,降低光谱之间的干扰,增强光谱的纯净度与灵敏度;构建包含4层隐含层的深度卷积神经网络模型,将交叉熵作为代价函数,对该网络模型实施反向传播训练,将经过预处理的待测产品近红外激光吸收光谱输入至训练好的深度卷积神经网络模型中,其输出的结果即待测产品的无损分级检测结果。实验表明,该方法可以有效实现产品的无损分级检测,针对不同类型的产品分级识别率可达97%以上,检测耗时最高为1.11 s,其检测效率更高。 展开更多
关键词 近红外激光 吸收光谱 吸光度 图像预处理 深度卷积神经网络 无损分级检测
在线阅读 下载PDF
基于多种深度卷积神经网络模型的汉族青少年儿童肘关节X线骨龄推断
17
作者 李丹阳 周慧明 +4 位作者 万雷 刘太昂 李远喆 汪茂文 王亚辉 《法医学杂志》 北大核心 2025年第1期48-58,共11页
目的探讨适用于我国汉族青少年儿童肘关节X线图像的深度学习骨龄自动推断模型,并评估其性能。方法采集我国华东、华南、华中、西北地区6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像943例(男性517例,女性426例),采用3种实验方案(... 目的探讨适用于我国汉族青少年儿童肘关节X线图像的深度学习骨龄自动推断模型,并评估其性能。方法采集我国华东、华南、华中、西北地区6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像943例(男性517例,女性426例),采用3种实验方案(方案一:将预处理后的上述图像直接输入回归模型;方案二:以“肘关节重点骨骼标注”作为标签训练分割网络,将分割后的图像输入回归模型;方案三:以“肘关节全部骨骼标注”作为标签训练分割网络,将分割后的图像输入回归模型)进行肘关节X线骨龄预测。针对分割任务,从U-Net、UNet++和TransUNet中遴选出最优网络模型作为分割网络;针对回归任务,选择VGG16、VGG19、InceptionV2、InceptionV3、ResNet34、ResNet50、ResNet101和DenseNet121模型进行骨龄预测。采用随机抽样的方法抽取80%样本(754例)作为训练集和验证集,用于模型拟合和超参数的调整;20%(189例)作为内部测试集,用于测试训练后模型性能。另采集104例同源6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像作为外部测试集。通过比较模型预测年龄与真实生活年龄之间的平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)、_(±0.7岁)的准确率(P_(±0.7岁))、_(±1.0岁)的准确率(P_(±1.0岁)),并绘制雷达图、散点图、热力图评估模型的性能。结果按照方案三的方法进行分割时,UNet++模型在学习率为0.0001时的分割损失为0.0004,准确率为93.8%,模型分割性能优异。在内部测试集中,DenseNet121模型采用该分割方法的模型预测结果最优,MAE、P_(±0.7岁)、P_(±1.0岁)分别为0.83岁、70.03%、84.30%。在外部测试集中,DenseNet121模型采用方案三的结果最优,平均MAE为0.89岁、平均RMSE为1.00岁。结论对青少年儿童肘关节X线图像进行骨龄自动推断时,分割网络推荐使用UNet++模型,DenseNet121模型在采用方案三时的性能最优。使用分割网络,特别是以包括肱骨远端、桡骨近端、尺骨近端全部肘关节作为标注区域的分割网络能提高肘关节X线骨龄推断的准确性。 展开更多
关键词 法医人类学 年龄推断 X线图像 肘关节 深度卷积神经网络 分割网络 青少年 儿童
在线阅读 下载PDF
基于图神经网络深度强化学习的高铁列车运行图智能编制方法
18
作者 王岩 范家铭 +1 位作者 张新 李博 《铁道学报》 北大核心 2025年第6期1-11,共11页
为实现列车运行图编制效率与质量的统筹优化,结合人工智能领域的图神经网络和深度强化学习算法,提出一种离线预训练、在线实时求解的高铁列车运行图智能编制方法。将高铁列车运行图编制过程建模为马尔可夫决策过程,基于析取图构建列车... 为实现列车运行图编制效率与质量的统筹优化,结合人工智能领域的图神经网络和深度强化学习算法,提出一种离线预训练、在线实时求解的高铁列车运行图智能编制方法。将高铁列车运行图编制过程建模为马尔可夫决策过程,基于析取图构建列车运行图编制环境模型,在环境中设计状态表征、动作空间、状态转移和奖励函数,为算法提供交互基础。设计基于GNN-PPO的离线预训练算法实现编图智能体高效训练,设计基于BS的在线编图算法进一步提升编制质量。以京沪高铁为例选择3种不同规模的编图场景开展实例验证。结果表明,该方法具有较好的扩展性和泛化能力,预训练后可直接完成不同规模场景下的编图任务,并且在大规模场景下仍能快速求解。 展开更多
关键词 列车运行图 神经网络 深度强化学习 马尔可夫决策过程 智能体
在线阅读 下载PDF
联合人工神经网络和深度强化学习的卫星通信系统资源优化管理
19
作者 颜晓娟 王承祥 张千锋 《广西大学学报(自然科学版)》 北大核心 2025年第2期397-408,共12页
为了缓解卫星通信系统中频谱资源受限与业务数量不断增长且服务质量(QoS)要求多样之间的矛盾,联合人工神经网络(ANN)和深度强化学习(DRL),在用户时延QoS约束和最小性能要求下,以系统性能最大化为目标研究资源优化管理问题。首先,分析了... 为了缓解卫星通信系统中频谱资源受限与业务数量不断增长且服务质量(QoS)要求多样之间的矛盾,联合人工神经网络(ANN)和深度强化学习(DRL),在用户时延QoS约束和最小性能要求下,以系统性能最大化为目标研究资源优化管理问题。首先,分析了用户在非正交多址接入(NOMA)和正交多址接入(OMA)技术下的可达性能,推导了最小性能要求和系统关键参数对多址接入技术选择的影响。其次,利用ANN对特定场景下用户选择多址接入技术,避免在NOMA技术不适用场景进行功率优化分配。最后,提出上下界可变DRL算法,根据奖励动态地调整NOMA用户对功率分配因子的寻优区间,从而提高算法的收敛速度。仿真结果验证了时延QoS约束对用户性能的不利影响,最小性能要求对NOMA技术应用优势的影响,以及所提方案在提高收敛速度和卫星通信网络可达性能上的优势。 展开更多
关键词 卫星通信系统 资源优化 人工神经网络 深度强化学习 时延服务质量约束
在线阅读 下载PDF
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
20
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数域卷积神经网络 有监督学习
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部