堆叠覆盖环境下的机械臂避障抓取是一个重要且有挑战性的任务。针对机械臂在堆叠环境下的避障抓取任务,本文提出了一种基于图像编码器和深度强化学习(deep reinforcement learning,DRL)的机械臂避障抓取方法Ec-DSAC(encoder and crop fo...堆叠覆盖环境下的机械臂避障抓取是一个重要且有挑战性的任务。针对机械臂在堆叠环境下的避障抓取任务,本文提出了一种基于图像编码器和深度强化学习(deep reinforcement learning,DRL)的机械臂避障抓取方法Ec-DSAC(encoder and crop for discrete SAC)。首先设计结合YOLO(you only look once)v5和对比学习网络编码的图像编码器,能够编码关键特征和全局特征,实现像素信息至向量信息的降维。其次结合图像编码器和离散软演员-评价家(soft actor-critic,SAC)算法,设计离散动作空间和密集奖励函数约束并引导策略输出的学习方向,同时使用随机图像裁剪增加强化学习的样本效率。最后,提出了一种应用于深度强化学习预训练的二次行为克隆方法,增强了强化学习网络的学习能力并提高了控制策略的成功率。仿真实验中Ec-DSAC的避障抓取成功率稳定高于80.0%,验证其具有比现有方法更好的避障抓取性能。现实实验中避障抓取成功率为73.3%,验证其在现实堆叠覆盖环境下避障抓取的有效性。展开更多
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim...为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。展开更多
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N...非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。展开更多
文摘堆叠覆盖环境下的机械臂避障抓取是一个重要且有挑战性的任务。针对机械臂在堆叠环境下的避障抓取任务,本文提出了一种基于图像编码器和深度强化学习(deep reinforcement learning,DRL)的机械臂避障抓取方法Ec-DSAC(encoder and crop for discrete SAC)。首先设计结合YOLO(you only look once)v5和对比学习网络编码的图像编码器,能够编码关键特征和全局特征,实现像素信息至向量信息的降维。其次结合图像编码器和离散软演员-评价家(soft actor-critic,SAC)算法,设计离散动作空间和密集奖励函数约束并引导策略输出的学习方向,同时使用随机图像裁剪增加强化学习的样本效率。最后,提出了一种应用于深度强化学习预训练的二次行为克隆方法,增强了强化学习网络的学习能力并提高了控制策略的成功率。仿真实验中Ec-DSAC的避障抓取成功率稳定高于80.0%,验证其具有比现有方法更好的避障抓取性能。现实实验中避障抓取成功率为73.3%,验证其在现实堆叠覆盖环境下避障抓取的有效性。
文摘为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。
文摘非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。