期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
1
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于深度图卷积神经网络的Exploit Kit攻击活动检测方法 被引量:2
2
作者 刘小乐 方勇 +1 位作者 黄诚 许益家 《信息安全研究》 2022年第7期685-693,共9页
攻击者使用漏洞利用工具包(exploit kit, EK)对软件系统、浏览器及其插件中存在的漏洞进行利用,达到隐蔽传播恶意负载的意图.传统EK攻击活动检测方法通过提取网络流量中的url进行静态分析,忽略了EK攻击活动产生的网络流量数据包之间的... 攻击者使用漏洞利用工具包(exploit kit, EK)对软件系统、浏览器及其插件中存在的漏洞进行利用,达到隐蔽传播恶意负载的意图.传统EK攻击活动检测方法通过提取网络流量中的url进行静态分析,忽略了EK攻击活动产生的网络流量数据包之间的交互过程,导致检测准确度较低.提出一种基于深度图卷积神经网络(deep graph convolutional neural network, DGCNN)的EK攻击活动检测方法.将HTTP请求响应对作为节点,节点之间的重定向关系作为边,根据自定义的节点和边的生成规则构建重定向图,使用DGCNN进行图的节点结构特征提取,并使用传统的深度学习方法进行图分类.实验结果表明,该方法能够有效检测EK攻击活动,平均检测准确率达到97.54%. 展开更多
关键词 漏洞利用工具包 HTTP请求响应对 重定向图 深度图卷积神经网络 深度学习 图分类
在线阅读 下载PDF
基于卷积神经网络的室内场景三维重建技术研究 被引量:9
3
作者 姚晓峰 武利秀 +1 位作者 章伟 王松 《计算机应用与软件》 北大核心 2019年第9期232-235,共4页
三维场景重建技术是计算机视觉领域的十分重要的研究课题。传统三维场景重建大多是专业工程师通过手工制图实现,效率不高且成本较高。对此提出一种基于卷积神经网络的三维场景重建方法。该方法在对2D图像进行语义分割的基础上,提取分割... 三维场景重建技术是计算机视觉领域的十分重要的研究课题。传统三维场景重建大多是专业工程师通过手工制图实现,效率不高且成本较高。对此提出一种基于卷积神经网络的三维场景重建方法。该方法在对2D图像进行语义分割的基础上,提取分割后的室内场景元素图像块,训练一个基于卷积神经网络的三维模型匹配模型;再将匹配得到的三维模型结合深度图构造的残缺三维模型,进一步进行组合,从而完成室内场景的三维重建工作。实验验证了该方法的可行性和优异性。 展开更多
关键词 三维场景重建 卷积神经网络 三维模型匹配 深度图
在线阅读 下载PDF
基于深度图及分离池化技术的场景复原及语义分类网络 被引量:2
4
作者 林金花 姚禹 王莹 《自动化学报》 EI CSCD 北大核心 2019年第11期2178-2186,共9页
在机器视觉感知系统中,从不完整的被遮挡的目标对象中鲁棒重建三维场景及其语义信息至关重要.目前常用方法一般将这两个功能分开处理,本文将二者结合,提出了一种基于深度图及分离池化技术的场景复原及语义分类网络,依据深度图中的RGB-D... 在机器视觉感知系统中,从不完整的被遮挡的目标对象中鲁棒重建三维场景及其语义信息至关重要.目前常用方法一般将这两个功能分开处理,本文将二者结合,提出了一种基于深度图及分离池化技术的场景复原及语义分类网络,依据深度图中的RGB-D信息,完成对三维目标场景的重建与分类.首先,构建了一种CPU端到GPU端的深度卷积神经网络模型,将从传感器采样的深度图像作为输入,深度学习摄像机投影区域内的上下文目标场景信息,网络的输出为使用改进的截断式带符号距离函数(Truncated signed distance function, TSDF)编码后的体素级语义标注.然后,使用分离池化技术改进卷积神经网络的池化层粒度结构,设计带细粒度池化的语义分类损失函数,用于回馈网络的语义分类重定位.最后,为增强卷积神经网络的深度学习能力,构建了一种带有语义标注的三维目标场景数据集,以此加强本文所提网络的深度学习鲁棒性.实验结果表明,与目前较先进的网络模型对比,本文网络的重建规模扩大了2.1%,所提深度卷积网络对缺失场景的复原效果较好,同时保证了语义分类的精准度. 展开更多
关键词 机器视觉感知系统 池化技术 深度图 深度学习 卷积神经网络
在线阅读 下载PDF
单目视觉的深度与位姿联合预测网络 被引量:1
5
作者 贾瑞明 李彤 +2 位作者 刘圣杰 苗霞 王一丁 《计算机应用与软件》 北大核心 2021年第12期155-160,186,共7页
深度图与相机位姿参数是图像三维场景重建的重要数据,使用两个卷积网络分别预测,不仅效率低并且切断了二者之间的联系。对此提出一种联合预测深度图与相机位姿的卷积神经网络,输入单幅RGB图像,经过共享编码器编码,经两路子网络分别解码... 深度图与相机位姿参数是图像三维场景重建的重要数据,使用两个卷积网络分别预测,不仅效率低并且切断了二者之间的联系。对此提出一种联合预测深度图与相机位姿的卷积神经网络,输入单幅RGB图像,经过共享编码器编码,经两路子网络分别解码输出深度图与相机位姿参数,其中位姿预测子网络也为双路结构,将位置与姿态参数分离,避免两类参数的串扰。该网络的多任务结构通过信息共享可提升预测精度和效率。实验验证了该方法的可行性与优异性。 展开更多
关键词 卷积神经网络 深度图预测 相机位姿估计 多任务结构
在线阅读 下载PDF
基于深层图卷积的EEG情绪识别方法研究 被引量:2
6
作者 李奇 常立娜 +1 位作者 武岩 闫旭荣 《电子测量技术》 北大核心 2024年第4期18-22,共5页
针对浅层图卷积提取的局部脑区空间关联信息对情感脑电表征不足的问题,本文提出了一种深层图卷积网络模型。该模型利用深层图卷积学习情绪脑电全局通道间的内在关系,在卷积传播过程中应用残差连接和权重自映射解决深层图卷积网络面临的... 针对浅层图卷积提取的局部脑区空间关联信息对情感脑电表征不足的问题,本文提出了一种深层图卷积网络模型。该模型利用深层图卷积学习情绪脑电全局通道间的内在关系,在卷积传播过程中应用残差连接和权重自映射解决深层图卷积网络面临的节点特征收敛到固定空间无法学习到有效特征的问题,并在卷积层后加入PN正则化扩大不同情绪特征间的距离,提高情绪识别的性能。在SEED数据集上进行实验,与浅层图卷积网络相比准确率提高了0.7%,标准差下降了3.15。结果表明该模型提取的全局脑区空间关联信息对情绪识别的有效性。 展开更多
关键词 脑电信号 情绪识别 深度图卷积神经网络 全局脑区
在线阅读 下载PDF
深度图超分辨率重建研究综述 被引量:6
7
作者 赵利军 王可 +2 位作者 张晋京 张加龙 王安红 《计算机应用研究》 CSCD 北大核心 2023年第6期1621-1628,1640,共9页
虽然高质量高分辨率的深度图能够显著地提高各种自然场景计算机视觉任务的性能,但是深度相机硬件的限制使得消费级深度相机拍摄到的深度图存在分辨率低、质量差和无效空洞等问题。深度图超分辨率重建(depth super-resolution reconstruc... 虽然高质量高分辨率的深度图能够显著地提高各种自然场景计算机视觉任务的性能,但是深度相机硬件的限制使得消费级深度相机拍摄到的深度图存在分辨率低、质量差和无效空洞等问题。深度图超分辨率重建(depth super-resolution reconstruction,DSR)是一种能有效提高深度图分辨率和质量的技术,并且DSR已经成为计算机视觉领域的研究热点。首先将介绍DSR的定义和近几年国内外DSR算法的研究进展,然后对深度学习DSR重建算法进行重点阐述与分析。接下来,将介绍深度图像质量评估准则。最后,对DSR的应用领域和未来所面对的挑战和机遇进行展望。 展开更多
关键词 超分辨率重建 深度学习 卷积神经网络 深度图
在线阅读 下载PDF
基于FSCD-CNN的深度图像快速帧内预测模式选择算法 被引量:3
8
作者 崔鹏涛 张倩 +3 位作者 刘敬怀 周超 王斌 司文 《应用科学学报》 CAS CSCD 北大核心 2021年第3期433-442,共10页
针对3D-HEVC的多视点视频加深度图的编码格式和四叉树编码结构所带来的编码复杂度问题,提出了一种深度图像快速帧内预测模式选择算法。首先,从深度视频序列中以最优的深度图最大编码单元(largest coding unit, LCU)划分深度为标签获取... 针对3D-HEVC的多视点视频加深度图的编码格式和四叉树编码结构所带来的编码复杂度问题,提出了一种深度图像快速帧内预测模式选择算法。首先,从深度视频序列中以最优的深度图最大编码单元(largest coding unit, LCU)划分深度为标签获取训练集;其次,构建了适用于LCU的Cu深度快速选择卷积神经网络(fast selecting Cu’s depth-convolutional neural network, FSCD-CNN);最后,对深度图LCU进行划分深度预测,跳过部分编码模式决策,实现最佳LCU划分。实验结果表明,与相关文献对比,所提算法在保持了编码性能的同时平均减少了15%的编码时间,实验验证了其有效性和可靠性。 展开更多
关键词 3D-HEVC 深度图 最大编码单元 卷积神经网络 编码复杂度
在线阅读 下载PDF
基于T-CNN的3D-HEVC深度图帧内快速编码算法
9
作者 于源 贾克斌 《高技术通讯》 CAS 2023年第10期1068-1076,共9页
3D-HEVC标准中引入了具有大面积平坦区域、陡峭边缘和低纹理复杂度特性的深度图。针对深度图编码过程中编码单元(CU)率失真优化导致编码复杂度过高这一问题,本文在分析深度图编码所具有的特点的基础上,构建了深度图划分深度数据集,并提... 3D-HEVC标准中引入了具有大面积平坦区域、陡峭边缘和低纹理复杂度特性的深度图。针对深度图编码过程中编码单元(CU)率失真优化导致编码复杂度过高这一问题,本文在分析深度图编码所具有的特点的基础上,构建了深度图划分深度数据集,并提出了一种基于两通道特征传递卷积神经网络(T-CNN)的划分深度预测算法。使用本文提出的算法替换原始编码器中各视点下深度图CU划分模块,可以在一定的率失真性能损失下,将原始HTM-16.0编码器编码时间平均减少76%左右,编码效率得到了显著提升。 展开更多
关键词 3D-HEVC 深度图 帧内编码 卷积神经网络
在线阅读 下载PDF
三维语义场景复原网络 被引量:4
10
作者 林金花 王延杰 《光学精密工程》 EI CAS CSCD 北大核心 2018年第5期1231-1241,共11页
从不完整的视觉信息中推断出物体的三维几何形状是机器视觉系统应当具备的重要能力,而识别出场景中物体的语义是机器视觉系统的核心。传统方法通常将二者分离实现,本文将场景复原与目标语义紧密结合,提出了一种三维语义场景复原网络模型... 从不完整的视觉信息中推断出物体的三维几何形状是机器视觉系统应当具备的重要能力,而识别出场景中物体的语义是机器视觉系统的核心。传统方法通常将二者分离实现,本文将场景复原与目标语义紧密结合,提出了一种三维语义场景复原网络模型,仅以单一深度图作为输入,实现对三维场景的语义分类和场景复原。首先,建立一种端到端的三维卷积神经网络,网络的输入是深度图,使用三维上下文模块来对相机视锥体内的区域进行学习,进而输出带有语义标签的三维体素;其次,建立了带有密集体积标签的合成三维场景数据集,用于训练本文的深度学习网络模型;最后通过实验表明,与现有的语义分类和场景复原方法相比,语义场景的复原接收区域增加了2.0%。结果表明:三维学习网络的复原性能良好,语义标注的准确率较高。 展开更多
关键词 机器视觉 场景复原 深度图 语义分类 卷积神经网络
在线阅读 下载PDF
基于深度学习的人体动作识别方法 被引量:7
11
作者 李玉鹏 刘婷婷 张良 《计算机应用研究》 CSCD 北大核心 2020年第1期304-307,316,共5页
针对人体动作深度视频的四维信息映射到二维空间后,动作分类容易发生混淆的问题,提出一种基于深度学习的人体动作识别方法。首先构建空间结构动态深度图,将深度视频的四维信息映射到二维空间,进行信息降维处理;然后提出基于联合代价函... 针对人体动作深度视频的四维信息映射到二维空间后,动作分类容易发生混淆的问题,提出一种基于深度学习的人体动作识别方法。首先构建空间结构动态深度图,将深度视频的四维信息映射到二维空间,进行信息降维处理;然后提出基于联合代价函数的深度卷积神经网络,结合交叉熵损失函数与中心损失函数作为联合代价函数,指导卷积层学习到更具分辨力的深度特征,以进行更精确的分类。在MSRDailyActivity3D和SYSU3D HOI两个数据集的实验结果表明,与现有方法相比,该方法识别率得到了较明显的提升,验证了其有效性和鲁棒性。该方法较好地解决了动作分类容易发生混淆的问题。 展开更多
关键词 深度信息 人体动作识别 深度学习 空间结构动态深度图 深度卷积神经网络
在线阅读 下载PDF
基于链路预测的未来新增航线发现 被引量:4
12
作者 冯霞 王尧 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第9期1729-1738,共10页
针对新增航线发现研究中存在的航线选择主观化、网络信息挖掘不充分等问题,考虑航空运输网络的拓扑结构特征和节点(通航城市)层次属性,提出了一种基于链路预测的未来新增航线发现(NARP)模型。NARP模型提取局部封闭子图构建子图邻接矩阵... 针对新增航线发现研究中存在的航线选择主观化、网络信息挖掘不充分等问题,考虑航空运输网络的拓扑结构特征和节点(通航城市)层次属性,提出了一种基于链路预测的未来新增航线发现(NARP)模型。NARP模型提取局部封闭子图构建子图邻接矩阵,基于距离标记子图节点结构重要性,采用因子分析和层次聚类提取节点层次属性。在此基础上,融合子图结构和节点属性2类特征,采用深度图卷积神经网络(DGCNN)进行链路预测,实现新增航线发现。在中国航空运输网络实际运行数据上的实验结果表明:较之基准方法,NARP模型的预测准确率最高提升9.28%;在网络极度不完整时,预测准确率可以保持在80%左右;预测结果符合航空运输网络的实际演变情况。 展开更多
关键词 航空运输网络 链路预测 未来新增航线发现(NARP) 节点层次属性 深度图卷积神经网络(dgcnn)
在线阅读 下载PDF
基于交通场景区域增强的单幅图像去雾方法 被引量:6
13
作者 梁中豪 彭德巍 +1 位作者 金彦旭 郭梁 《计算机应用》 CSCD 北大核心 2018年第5期1420-1426,共7页
针对当前已有的去雾算法在雾天道路图像的处理上易造成近处路面区域和远处天空区域亮度过低、处理程度偏强,而中远处区域去雾程度较低、亮度过高等问题,以基于深度学习去雾算法为基础提出一种结合雾天道路图像场景深度和道路图像特点的... 针对当前已有的去雾算法在雾天道路图像的处理上易造成近处路面区域和远处天空区域亮度过低、处理程度偏强,而中远处区域去雾程度较低、亮度过高等问题,以基于深度学习去雾算法为基础提出一种结合雾天道路图像场景深度和道路图像特点的去雾算法。首先基于深度学习的去雾算法原理,构建卷积神经网络求取场景透射率;然后基于大气散射模型和透射率估计出图像深度图,且构造两个参数:上阈值和下阈值来将深度图分为中、远、近三个区域;再基于深度图的不同区域构造增强函数,来确定图像处理的增强幅度照;最后在传统的大气散射模型基础上结合增强幅度照来调节不同区域的复原强度得到优化后的处理图像。实验结果表明,所提算法可以在保证良好去雾效果的前提下增强道路图像的中远处区域,有效解决了去雾后雾天道路图像近处路面和远处天空的色彩失真、对比度过低问题,提升复原图像的视觉效果,并且与暗原色先验算法、均匀与非均匀雾的视觉增强算法以及典型的基于深度学习去雾算法相比具有更好的图像清晰化效果。 展开更多
关键词 雾天交通图像 图像去雾 卷积神经网络 深度图
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部