期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度图卷积神经网络的Exploit Kit攻击活动检测方法 被引量:2
1
作者 刘小乐 方勇 +1 位作者 黄诚 许益家 《信息安全研究》 2022年第7期685-693,共9页
攻击者使用漏洞利用工具包(exploit kit, EK)对软件系统、浏览器及其插件中存在的漏洞进行利用,达到隐蔽传播恶意负载的意图.传统EK攻击活动检测方法通过提取网络流量中的url进行静态分析,忽略了EK攻击活动产生的网络流量数据包之间的... 攻击者使用漏洞利用工具包(exploit kit, EK)对软件系统、浏览器及其插件中存在的漏洞进行利用,达到隐蔽传播恶意负载的意图.传统EK攻击活动检测方法通过提取网络流量中的url进行静态分析,忽略了EK攻击活动产生的网络流量数据包之间的交互过程,导致检测准确度较低.提出一种基于深度图卷积神经网络(deep graph convolutional neural network, DGCNN)的EK攻击活动检测方法.将HTTP请求响应对作为节点,节点之间的重定向关系作为边,根据自定义的节点和边的生成规则构建重定向图,使用DGCNN进行图的节点结构特征提取,并使用传统的深度学习方法进行图分类.实验结果表明,该方法能够有效检测EK攻击活动,平均检测准确率达到97.54%. 展开更多
关键词 漏洞利用工具包 HTTP请求响应对 重定向图 深度图卷积神经网络 深度学习 图分类
在线阅读 下载PDF
基于计算机视觉和DNN的运动姿态检测算法
2
作者 李严 董坤 《电子设计工程》 2024年第11期46-50,共5页
针对传统人体运动姿态检测算法存在鲁棒性较差及准确率偏低的问题,文中基于改进的深度图卷积网络提出了一种运动姿态检测算法。该算法将图卷积网络的时域和空间域模型相结合,提升了模型的感受野,并从时、空两个维度提取人体特征点的数据... 针对传统人体运动姿态检测算法存在鲁棒性较差及准确率偏低的问题,文中基于改进的深度图卷积网络提出了一种运动姿态检测算法。该算法将图卷积网络的时域和空间域模型相结合,提升了模型的感受野,并从时、空两个维度提取人体特征点的数据,再利用残差网络将时域和空间域卷积相连接,进而改善了模型拟合能力较差的不足。同时,对于模型因卷积核固定而导致无法适应多种类数据的缺陷,使用多头注意力机制来增强其自适应能力。在实验测试中,所提出的模型改进项相较原算法性能有一定提升,且与最优算法相比,该模型的误差指标降低了1.14 mm,准确率则提升了1.3%,证明了所提方法的有效性及优越性。 展开更多
关键词 时空结合 深度图卷积神经网络 残差网络 注意力机制 运动姿态检测 计算机视觉
在线阅读 下载PDF
基于链路预测的未来新增航线发现 被引量:4
3
作者 冯霞 王尧 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第9期1729-1738,共10页
针对新增航线发现研究中存在的航线选择主观化、网络信息挖掘不充分等问题,考虑航空运输网络的拓扑结构特征和节点(通航城市)层次属性,提出了一种基于链路预测的未来新增航线发现(NARP)模型。NARP模型提取局部封闭子图构建子图邻接矩阵... 针对新增航线发现研究中存在的航线选择主观化、网络信息挖掘不充分等问题,考虑航空运输网络的拓扑结构特征和节点(通航城市)层次属性,提出了一种基于链路预测的未来新增航线发现(NARP)模型。NARP模型提取局部封闭子图构建子图邻接矩阵,基于距离标记子图节点结构重要性,采用因子分析和层次聚类提取节点层次属性。在此基础上,融合子图结构和节点属性2类特征,采用深度图卷积神经网络(DGCNN)进行链路预测,实现新增航线发现。在中国航空运输网络实际运行数据上的实验结果表明:较之基准方法,NARP模型的预测准确率最高提升9.28%;在网络极度不完整时,预测准确率可以保持在80%左右;预测结果符合航空运输网络的实际演变情况。 展开更多
关键词 航空运输网络 链路预测 未来新增航线发现(NARP) 节点层次属性 深度图卷积神经网络(DGCNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部