期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于深度可分离空洞卷积金字塔的变压器渗漏油检测 被引量:9
1
作者 赵文清 刘亮 +2 位作者 胡嘉伟 翟永杰 赵振兵 《智能系统学报》 CSCD 北大核心 2023年第5期966-974,共9页
为了降低影响并提高对变压器渗漏油巡检图像的检测效率,提出一种基于深度可分离空洞卷积金字塔的变压器渗漏油检测模型。首先,将空洞金字塔中普通卷积块修改为深度可分离卷积块,以此扩大金字塔感受野,使特征提取网络提取到的特征图语义... 为了降低影响并提高对变压器渗漏油巡检图像的检测效率,提出一种基于深度可分离空洞卷积金字塔的变压器渗漏油检测模型。首先,将空洞金字塔中普通卷积块修改为深度可分离卷积块,以此扩大金字塔感受野,使特征提取网络提取到的特征图语义信息更加丰富;然后,改进了特征提取阶段低阶语义特征与高阶语义特征融合过程,进一步增强特征提取网络产生特征图的语义信息;最后,为了避免经过多次卷积、池化操作后特征图语义信息的损失,在融合过程中引入空间注意力机制和通道注意力机制,进一步增强特征图中的语义信息。与UNet(convolutional networks for biomedical image segmentation)、PSPNet(pyramid scene parseing network)、DeepLabv3+(encoder-decoder with atrous separable convolution for semantic image segmentation)和MCNN(multi-class convolutional neural network)等算法进行对比实验发现,本文所提出网络检测模型效果好,查准率达到了76.85%,平均交并比达到了64.63%,召回率达到了73.56%,检测速率达到了30 f/s。为了验证本文提出方法的有效性,设计了消融实验,与基础网络模型相比,查准率提高了9.33%,平均交并比提高了7.15%,召回率提高了5.66%。 展开更多
关键词 变压器 渗漏油检测 语义信息 深度可分离空洞卷积金字塔 低阶特征 高阶特征 特征融合 注意力机制
在线阅读 下载PDF
基于并行附加特征提取网络的SSD地面小目标检测模型 被引量:16
2
作者 李宝奇 贺昱曜 +1 位作者 强伟 何灵蛟 《电子学报》 EI CAS CSCD 北大核心 2020年第1期84-91,共8页
针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题,提出了一种计算量小、感受野大的深度可分离空洞卷积(Depthw... 针对SSD原始附加特征提取网络(Original Additional Feature Extraction Network,OAFEN)中stride操作造成图像小目标信息丢失和串联结构产生的多尺度特征之间冗余度较大的问题,提出了一种计算量小、感受野大的深度可分离空洞卷积(Depthwise Separable Dilated Convolution,DSDC),并利用DSDC设计了一个包含三个独立子网络的并行附加特征提取网络(Parallel Additional Feature Extraction Network,PAFEN).PAFEN上路用两个DSDC提取尺寸为19*19和3*3的特征图;中路用一个DSDC提取尺寸为10*10的特征图;下路用两个DSDC提取尺寸为5*5和1*1的特征图.实验结果表明,在SSD框架内,PAFEN在mAP和检测时间等方面均优于OAFEN,适用于地面小目标的检测任务. 展开更多
关键词 目标检测 SSD 深度可分离卷积 空洞卷积 深度可分离空洞卷积 并行附加特征提取网络
在线阅读 下载PDF
基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型 被引量:15
3
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2854-2862,共9页
针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的... 针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的基础网络和附加特征提取网络,记作SSD-MV2ESK,并为其选择了合理的扩张系数和多尺度系数。在合成孔径声呐图像水下多尺度目标检测数据集SST-DET上,SSD-MV2ESK在模型参数基本相等的条件下,检测精度比SSD-MV2提升4.71%。实验结果表明,SSD-MV2ESK适用于合成孔径声呐图像水下多尺度目标检测任务。 展开更多
关键词 合成孔径声呐 图像水下多尺度目标检测 SSD MobileNet V2 多通道可选择 深度可分离空洞卷积
在线阅读 下载PDF
基于改进CycleGAN的浑浊水体图像增强算法研究 被引量:3
4
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2022年第7期2504-2511,共8页
针对循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)在浑浊水体图像增强中存在质量差和速度慢的问题,该文提出一种可扩展、可选择和轻量化的特征提取单元BSDK(Bottleneck Selective Dilated Kernel),并利用BSDK设... 针对循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)在浑浊水体图像增强中存在质量差和速度慢的问题,该文提出一种可扩展、可选择和轻量化的特征提取单元BSDK(Bottleneck Selective Dilated Kernel),并利用BSDK设计了一个新的生成器网络BSDKNet。与此同时,提出一种多尺度损失函数MLF(Multi-scale Loss Function)。在自建的浑浊水体图像增强数据集TC(Turbid and Clear)上,该文BM-CycleGAN比原始CycleGAN的精度提升3.27%,生成器网络参数降低4.15MB,运算时间减少0.107s。实验结果表明BMCycleGAN适合浑浊水体图像增强任务。 展开更多
关键词 图像增强 生成对抗网络 循环生成对抗网络 深度可分离空洞卷积 多尺度结构相似性
在线阅读 下载PDF
基于多维度特征提取网络的肝脏图像分割 被引量:6
5
作者 刘蕊 续欣莹 谢珺 《河北大学学报(自然科学版)》 CAS 北大核心 2021年第4期426-435,共10页
随着计算机技术的发展,基于深度学习的医学图像自动分割已经成为人工智能辅助医疗的重要研究方向.为弥补现有神经网络结构对信息提取不足而产生的边缘细节丢失问题,构建了一种基于多维度特征提取网络(RDD-UNet)模型,该模型是基于残差UNe... 随着计算机技术的发展,基于深度学习的医学图像自动分割已经成为人工智能辅助医疗的重要研究方向.为弥补现有神经网络结构对信息提取不足而产生的边缘细节丢失问题,构建了一种基于多维度特征提取网络(RDD-UNet)模型,该模型是基于残差UNet和混合损失函数的三维分割网络,以向肝脏肿瘤分割方法提供高精度的脏器分割结果.首先,该网络从原始CT数据的3个轴向提取信息,以长短跳跃连接的组合形式融合多尺度语义特征,保证了层内和层间信息的充分利用.其次,网络中设计了不平衡深度可分离空洞卷积模块,在提升三维网络计算效率的同时,扩大了体素级别的特征感受范围.最后,针对小尺寸分割目标数据不平衡问题提出了混合损失函数,并与深度监督结构相结合,提升了边缘细节的分割效果.该网络模型从体素、轴向和网络层级3个维度上充分提取特征信息,提高了肝脏分割的准确率,在公共数据集LiTS 2017上的Dice分数达到0.9652,与其他方法相比达到了较高的精度水平. 展开更多
关键词 三维肝脏图像分割 残差连接 混合损失函数 深度可分离空洞卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部