期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向高分辨率遥感影像建筑物提取的SD-BASNet网络
1
作者
朱娟娟
黄亮
朱莎莎
《自然资源遥感》
北大核心
2025年第5期122-130,共9页
针对网络模型参数量大、下采样过程丢失影像建筑物细节信息的问题,受轻量级网络的启发,设计了一种融入深度可分离残差块和空洞卷积的建筑物提取网络(SD-BASNet)。首先,在深度监督编码器预测模块中设计了一个深度可分离残差块,将深度可...
针对网络模型参数量大、下采样过程丢失影像建筑物细节信息的问题,受轻量级网络的启发,设计了一种融入深度可分离残差块和空洞卷积的建筑物提取网络(SD-BASNet)。首先,在深度监督编码器预测模块中设计了一个深度可分离残差块,将深度可分离卷积引入主干网络ResNet中,避免卷积核过大,减少网络的参数量;其次,为防止网络轻量化带来的精度下降,将空洞卷积融入后处理优化模块的编码层,增大特征图的感受野,从而捕捉更广泛的上下文信息,提高建筑物特征提取的准确性。在WHU建筑物数据集上进行实验,在不同尺度建筑物提取中均表现较好,其平均交并比和平均像素精度分别为92.25%和96.59%,其召回率、精确率和F1指标分别达到96.50%,93.79%和92.61%。与PSPNet,SegNet,DeepLabV3,SE-UNet,UNet++等语义分割网络相比,SD-BASNet网络提取精度得到了显著提升,且提取的建筑物完整度更好;与基础网络BASNet相比,SD-BASNet网络的参数量与运行时间也有所减少,证实了该文提出的SD-BASNet网络的有效性。
展开更多
关键词
建筑物提取
高分辨率遥感影像
BASNet网络
深度可分离残差块
空洞卷积
在线阅读
下载PDF
职称材料
题名
面向高分辨率遥感影像建筑物提取的SD-BASNet网络
1
作者
朱娟娟
黄亮
朱莎莎
机构
昆明理工大学国土资源工程学院
云南省地矿测绘院有限公司
云南省山地灾害天空地一体化智慧监测国际联合实验室
中国地质调查局昆明自然资源综合调查中心
出处
《自然资源遥感》
北大核心
2025年第5期122-130,共9页
基金
国家自然科学基金项目“面向光学与SAR遥感图像语义变化检测的多任务学习方法研究”(编号:42361054)
云南省基础研究计划项目“轻量级自适应尺度特征遥感影像非监督变化检测方法”(编号:202201AT070164)
+1 种基金
湖南省自然科学基金项目“基于边缘注意力网络的建筑物动态变化检测和提取”(编号:2023JJ60561)
兴滇英才支持计划项目共同资助。
文摘
针对网络模型参数量大、下采样过程丢失影像建筑物细节信息的问题,受轻量级网络的启发,设计了一种融入深度可分离残差块和空洞卷积的建筑物提取网络(SD-BASNet)。首先,在深度监督编码器预测模块中设计了一个深度可分离残差块,将深度可分离卷积引入主干网络ResNet中,避免卷积核过大,减少网络的参数量;其次,为防止网络轻量化带来的精度下降,将空洞卷积融入后处理优化模块的编码层,增大特征图的感受野,从而捕捉更广泛的上下文信息,提高建筑物特征提取的准确性。在WHU建筑物数据集上进行实验,在不同尺度建筑物提取中均表现较好,其平均交并比和平均像素精度分别为92.25%和96.59%,其召回率、精确率和F1指标分别达到96.50%,93.79%和92.61%。与PSPNet,SegNet,DeepLabV3,SE-UNet,UNet++等语义分割网络相比,SD-BASNet网络提取精度得到了显著提升,且提取的建筑物完整度更好;与基础网络BASNet相比,SD-BASNet网络的参数量与运行时间也有所减少,证实了该文提出的SD-BASNet网络的有效性。
关键词
建筑物提取
高分辨率遥感影像
BASNet网络
深度可分离残差块
空洞卷积
Keywords
building extraction
high-spatial-resolution remote sensing imagery
boundary-aware salient object detection(BASNet)
depthwise separable residual block
dilated convolution
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向高分辨率遥感影像建筑物提取的SD-BASNet网络
朱娟娟
黄亮
朱莎莎
《自然资源遥感》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部