期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合字符级滑动窗口和深度残差网络的僵尸网络DGA域名检测方法 被引量:11
1
作者 刘小洋 刘加苗 +1 位作者 刘超 张宜浩 《电子学报》 EI CAS CSCD 北大核心 2022年第1期250-256,共7页
本文提出了一种基于字符级滑动窗口的深度残差网络(Sliding Window-Depth Residual Network,SWDRN),首次将轻量级深度可分离式卷积应用于僵尸网络中DGA(Domain Generation Algorithm)域名检测.SW-DRN采用深度可分离式卷积,相比标准卷积... 本文提出了一种基于字符级滑动窗口的深度残差网络(Sliding Window-Depth Residual Network,SWDRN),首次将轻量级深度可分离式卷积应用于僵尸网络中DGA(Domain Generation Algorithm)域名检测.SW-DRN采用深度可分离式卷积,相比标准卷积减少了约56%的参数,增强了模型检测效率.采集两种不同来源的数据,分别命名为Real-Dataset和Gen-Dataset.SW-DRN与对照组模型在两个数据集上进行实验,实验结果表明:SW-DRN模型在DGA域名二分类任务中的F-Score评估指标上分别取得了99.23%和97.81%的成绩;并且在少样本DGA域名家族以及域名字符串易混淆DGA域名情形下多分类任务中取得不错的成绩,相比目前已有的DGA域名分类模型在总体FScore上提升了1.23%和1.01%的性能,增强了DGA域名家族之间的识别;同时还对所提出的模型在生成对抗模型产生域名进行测试,均能得到有效的识别. 展开更多
关键词 域名生成算法 字符级向量 残差网络 深度可分离式卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部