期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合字符级滑动窗口和深度残差网络的僵尸网络DGA域名检测方法
被引量:
11
1
作者
刘小洋
刘加苗
+1 位作者
刘超
张宜浩
《电子学报》
EI
CAS
CSCD
北大核心
2022年第1期250-256,共7页
本文提出了一种基于字符级滑动窗口的深度残差网络(Sliding Window-Depth Residual Network,SWDRN),首次将轻量级深度可分离式卷积应用于僵尸网络中DGA(Domain Generation Algorithm)域名检测.SW-DRN采用深度可分离式卷积,相比标准卷积...
本文提出了一种基于字符级滑动窗口的深度残差网络(Sliding Window-Depth Residual Network,SWDRN),首次将轻量级深度可分离式卷积应用于僵尸网络中DGA(Domain Generation Algorithm)域名检测.SW-DRN采用深度可分离式卷积,相比标准卷积减少了约56%的参数,增强了模型检测效率.采集两种不同来源的数据,分别命名为Real-Dataset和Gen-Dataset.SW-DRN与对照组模型在两个数据集上进行实验,实验结果表明:SW-DRN模型在DGA域名二分类任务中的F-Score评估指标上分别取得了99.23%和97.81%的成绩;并且在少样本DGA域名家族以及域名字符串易混淆DGA域名情形下多分类任务中取得不错的成绩,相比目前已有的DGA域名分类模型在总体FScore上提升了1.23%和1.01%的性能,增强了DGA域名家族之间的识别;同时还对所提出的模型在生成对抗模型产生域名进行测试,均能得到有效的识别.
展开更多
关键词
域名生成算法
字符级向量
残差网络
深度可分离式卷积
在线阅读
下载PDF
职称材料
题名
融合字符级滑动窗口和深度残差网络的僵尸网络DGA域名检测方法
被引量:
11
1
作者
刘小洋
刘加苗
刘超
张宜浩
机构
重庆理工大学计算机科学与工程学院
重庆理工大学人工智能学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2022年第1期250-256,共7页
基金
国家社会科学基金(No.17XXW004)。
文摘
本文提出了一种基于字符级滑动窗口的深度残差网络(Sliding Window-Depth Residual Network,SWDRN),首次将轻量级深度可分离式卷积应用于僵尸网络中DGA(Domain Generation Algorithm)域名检测.SW-DRN采用深度可分离式卷积,相比标准卷积减少了约56%的参数,增强了模型检测效率.采集两种不同来源的数据,分别命名为Real-Dataset和Gen-Dataset.SW-DRN与对照组模型在两个数据集上进行实验,实验结果表明:SW-DRN模型在DGA域名二分类任务中的F-Score评估指标上分别取得了99.23%和97.81%的成绩;并且在少样本DGA域名家族以及域名字符串易混淆DGA域名情形下多分类任务中取得不错的成绩,相比目前已有的DGA域名分类模型在总体FScore上提升了1.23%和1.01%的性能,增强了DGA域名家族之间的识别;同时还对所提出的模型在生成对抗模型产生域名进行测试,均能得到有效的识别.
关键词
域名生成算法
字符级向量
残差网络
深度可分离式卷积
Keywords
domain generation algorithm
character-level vector
residual network
depthwise separable convolution
分类号
TN915 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合字符级滑动窗口和深度残差网络的僵尸网络DGA域名检测方法
刘小洋
刘加苗
刘超
张宜浩
《电子学报》
EI
CAS
CSCD
北大核心
2022
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部