期刊文献+
共找到486篇文章
< 1 2 25 >
每页显示 20 50 100
基于Transformer与深度可分离卷积的轻量级遥感图像语义分割
1
作者 马飞 张森峰 +1 位作者 杨飞霞 徐光宪 《电光与控制》 北大核心 2025年第7期33-38,66,共7页
遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥... 遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥感图像语义分割方法。首先,引入权重自适应的多头自注意力,在全局范围内对远距离像素关联性建模,获取丰富的上下文信息;其次,构建堆叠的深度可分离卷积层,以低计算复杂度减少空间细节信息的丢失;此外利用线性注意力机制设计特征聚合模块,对全局情景信息与空间细节信息进行融合。经过在Vaihingen和Potsdam数据集上测试结果表明,所提方法的分割总体准确率分别高达92.6%和92.1%,GFLOPs仅为11.5,不仅有效提升了分割精度,而且大大降低了计算复杂度。 展开更多
关键词 遥感图像 语义分割 深度学习 深度可分离卷积 线性注意力机制
在线阅读 下载PDF
基于深度可分离卷积残差模块的抓取检测算法
2
作者 平路静 马行 +1 位作者 穆春阳 姜谱照 《传感器与微系统》 北大核心 2025年第5期133-137,共5页
针对在移动设备和嵌入式设备等资源受限的环境中,机器人不易实时准确抓取物体的问题,提出一种基于深度可分离卷积残差模块的卷积神经网络(CNN)模型。该模型充分利用相机颜色和深度信息,以RGB-D图像作为网络输入,直接对逐个像素点完成抓... 针对在移动设备和嵌入式设备等资源受限的环境中,机器人不易实时准确抓取物体的问题,提出一种基于深度可分离卷积残差模块的卷积神经网络(CNN)模型。该模型充分利用相机颜色和深度信息,以RGB-D图像作为网络输入,直接对逐个像素点完成抓取预测。利用深度可分离卷积替代传统残差结构中的标准卷积层,构建出深度可分离卷积残差模块,在不降低网络性能的基础上减少模型参数,网络模型大小仅为2.3 MB。最后,在Cornell抓取数据集上进行实验,准确率达到97.7%,检测速度为58 fps。 展开更多
关键词 卷积神经网络 深度可分离卷积 残差网络 抓取检测
在线阅读 下载PDF
融合通道-时间注意力和深度可分离卷积的欺骗语音检测
3
作者 冯嘉琪 王华朋 刘天赐 《科学技术与工程》 北大核心 2025年第22期9427-9435,共9页
自动说话人验证系统在应对日益逼真的深度伪造语音时,面临显著的欺骗攻击威胁。现有基于卷积神经网络的反欺骗模型在捕捉全局特征与应对未知类型语音伪造的泛化性能方面存在不足。为提升反欺骗检测效果,提出了一种融合通道-时间注意力... 自动说话人验证系统在应对日益逼真的深度伪造语音时,面临显著的欺骗攻击威胁。现有基于卷积神经网络的反欺骗模型在捕捉全局特征与应对未知类型语音伪造的泛化性能方面存在不足。为提升反欺骗检测效果,提出了一种融合通道-时间注意力机制与深度可分离卷积的网络模型CT-DSCNet。该模型在RawNet2基础上引入通道-时间注意力模块,增强对重要语音特征的关注,减少无关区域的干扰;同时采用深度可分离卷积残差块,优化计算效率与模型实时性。实验在AS-Vspoof2019、ASVspoof2021和FMFCC-A数据集上进行,结果显示CT-DSCNet在ASVspoof2019 LA测试集上的等错误率(equal error rate,EER)达到1.53%,较基线模型降低70.58%。在泛化能力方面相较其他模型也表现出色,在FMFCC-A评估集上的EER,较改进前模型相比提高了25.35%。实验验证了该方法在提升伪造语音检测性能和跨数据集适应性方面的有效性。 展开更多
关键词 深度伪造语音 注意力机制 深度可分离卷积 语音反欺骗
在线阅读 下载PDF
基于动态深度可分离卷积神经网络的管道泄漏孔径识别
4
作者 王秀芳 刘源 李月明 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期183-189,共7页
针对传统模型为提高管道泄漏检测的精度而导致的模型结构复杂度、参数量和计算量大的问题,提出一种基于动态深度可分离卷积神经网络的管道泄漏孔径识别方法;动态卷积层将提取到的泄漏信号特征经过通道注意力权值计算和动态权值融合,通... 针对传统模型为提高管道泄漏检测的精度而导致的模型结构复杂度、参数量和计算量大的问题,提出一种基于动态深度可分离卷积神经网络的管道泄漏孔径识别方法;动态卷积层将提取到的泄漏信号特征经过通道注意力权值计算和动态权值融合,通过动态深度可分离卷积层获得更强的特征表达能力,利用全局平均池化层降低网络模型参数,通过全连接层识别管道泄漏孔径。结果表明:新方法具有较高的识别精度,克服了传统模型资源开销大、功耗高的问题,降低了模型的训练时间,提升了管道泄漏孔径的识别速度,可用于工业中的管道泄漏程度监测。 展开更多
关键词 泄漏孔径识别 动态深度可分离卷积 轻量化网络 动态卷积
在线阅读 下载PDF
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:4
5
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
在线阅读 下载PDF
基于深度可分离卷积和残差注意力模块的车道线检测方法 被引量:3
6
作者 崔明义 冯治国 +2 位作者 代建琴 赵雪峰 袁森 《激光杂志》 CAS 北大核心 2024年第4期81-87,共7页
针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈... 针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈残差单元降低网络参数数量,引入ECANet注意力机制增加重要特征通道权重,提升车道线检测精度。在Tusimple数据集和GZUCDS自建数据集上的实验结果表明:在晴天场景下,LPINet网络车道线检测精度可达96.62%,且模型参数量降至1.64 MB,实现了轻量化设计;在雾天、雨天、夜晚和隧道复杂场景中进行了探索性研究,车道线检测精度达到93.86%,证明了方法的有效性。 展开更多
关键词 车道线检测 深度学习 残差网络 深度可分离卷积 注意力机制
在线阅读 下载PDF
基于多尺度深度可分离ResNet的废弃家电回收图像分类模型
7
作者 雷帅 仇明鑫 +1 位作者 柳先辉 张颖瑶 《计算机科学》 北大核心 2025年第S1期377-383,共7页
针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特... 针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特征信息提取能力,在此基础上基于ResNet设计了针对废弃家电回收图像分类问题的ME-ResNet模型;其次,通过用深度可分离卷积替换多尺度卷积中的部分卷积层,实现ME-ResNet模型轻量化;最后,通过与其他卷积神经网络的对比实验,对ME-ResNet及其轻量化模型的性能进行了验证。研究结果表明:相较于经典的卷积神经网络ResNet34,ME-ResNet及其轻量化模型均能有效提升识别准确度,针对构建的数据集,其最优准确率分别提升了1.2%和0.3%,宏精确率分别提升了1.7%和0.9%,宏召回率分别提升了1.3%和0.2%,宏F1分数分别提升了1.5%和0.5%。 展开更多
关键词 多尺度卷积 ME-ResNet模型 深度可分离卷积 图像分类 残差连接
在线阅读 下载PDF
基于深度可分离卷积神经网络的水声目标分类研究及FPGA实现 被引量:1
8
作者 张天帅 刘金涛 王良 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期152-165,共14页
针对传统声纳处理器算力受限,能效比低,难以支撑水声目标识别实时推理的问题,本文基于异构SoC平台设计了面向被动声纳水下目标实时计算处理系统。该系统具有较低资源开销和较小分类精度损失等优点,是一种低时延、高能效比的硬件加速器... 针对传统声纳处理器算力受限,能效比低,难以支撑水声目标识别实时推理的问题,本文基于异构SoC平台设计了面向被动声纳水下目标实时计算处理系统。该系统具有较低资源开销和较小分类精度损失等优点,是一种低时延、高能效比的硬件加速器解决方案。本文以MobileNetV1网络模型为基础并对其进行结构优化,在现场可编程门阵列(Field programmable gate array,FPGA)上通过并行流水线的加速结构实现它的前向推理过程,并对其权值参数进行二值化的处理,以达到减少存储量和计算量的同时加快其推理速度的目的。同时,根据在输入通道维度以及输出图像高度上分块并行的优化思想,设计了深度可分离卷积的流水优化策略,采用并行流水的结构极大减少了前向推理的时间。实验表明,在利用出海实际采集得到的水声数据集上,本文实现的系统识别精度为88.5%,在的分辨率的图像上,时间延迟达到4.23 ms。对比CPU速度提升了70.68倍,是GPU速度的68%。能效比分别为CPU的0.08%,GPU的2.12%。本文为神经网络在硬件资源有限以及功耗存在限制的轻量型移动端或者边缘设备上的应用与部署,以及对促进融合水下勘探网络的建设和水下信息的快速获取提供了设计思路。 展开更多
关键词 水声目标分类 深度可分离卷积 定点量化 FPGA
在线阅读 下载PDF
基于RISC-Ⅴ的深度可分离卷积神经网络加速器
9
作者 曹希彧 陈鑫 魏同权 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2536-2551,共16页
人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷... 人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷积神经网络对高性能计算的需求.为了解决这一问题,本文设计了一个基于RISC-Ⅴ的轻量化深度可分离卷积神经网络加速器,旨在弥补RISC-Ⅴ处理器的卷积计算能力的不足.该加速器支持深度可分离卷积中的两个关键算子,即深度卷积和点卷积,并能够通过共享硬件结构提高资源利用效率.深度卷积计算流水线采用了高效的Winograd卷积算法,并使用2×2数据块组合拼接成4×4数据片的方式来减少传输数据冗余.同时,通过拓展RISC-Ⅴ处理器端指令,使得加速器能够实现更灵活的配置和调用.实验结果表明,相较于基础的RISC-Ⅴ处理器,调用加速器后的点卷积和深度卷积计算取得了显著的加速效果,其中点卷积加速了104.40倍,深度卷积加速了123.63倍.与此同时,加速器的性能功耗比达到了8.7GOPS/W.本文的RISC-Ⅴ处理器结合加速器为资源受限环境下卷积神经网络的部署提供了一个高效可行的选择. 展开更多
关键词 神经网络 深度可分离卷积 RISC-Ⅴ Winograd快速卷积 硬件加速
在线阅读 下载PDF
基于连续小波分析与深度可分离卷积的水电机组工况识别
10
作者 马建军 王彤 +3 位作者 王浩宇 唐一中 郭鹏程 李昂 《水电能源科学》 北大核心 2024年第12期166-170,共5页
为快速、准确地判定水电机组运行状态,提出了一种基于连续小波分析与深度可分离卷积相结合的工况识别方法。该方法首先采集水电机组不同运行工况下的振动信号,通过连续小波变换对其进行解析,并获取其多尺度时频联合分布信息。随后,对时... 为快速、准确地判定水电机组运行状态,提出了一种基于连续小波分析与深度可分离卷积相结合的工况识别方法。该方法首先采集水电机组不同运行工况下的振动信号,通过连续小波变换对其进行解析,并获取其多尺度时频联合分布信息。随后,对时频信息进行了数据归一化、几何尺寸变换和格式转换等一系列处理,将其转换为数字图像形式。最后,构建了深度可分离卷积神经网络模型,依据数字图像信息对模型进行参数训练,该模型能够有效区分机组不同出力工况及过渡工况。根据我国西南地区某水电站的一台轴流转桨式水电机组的振动信号,采用所提方法实现了机组多种工况的识别,正确率达到98.06%。 展开更多
关键词 水电机组 振动信号 连续小波变换 深度可分离卷积
在线阅读 下载PDF
基于可分离卷积与小波变换融合的道路裂缝检测 被引量:9
11
作者 刘云清 吴越 +2 位作者 张琼 颜飞 陈姗姗 《计算机科学》 CSCD 北大核心 2024年第S02期304-312,共9页
针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部... 针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部分,通过深度可分离卷积增强模型的能力,扩大模型感受野,在跳跃连接部分引入了C2G注意力机制模块,提升模型对裂缝特征的感知能力;并引入了ASPP(Atrous Spatial Pyramid Pooling)和DWT(Discrete Wavelet Transformation)。ASPP通过在多个尺度上进行操作,有助于捕捉到裂缝的特征,而DWT能够减少卷积池化过程中的裂缝空间信息损失,保留裂缝边缘信息。这种结构设计使得网络更专注于裂缝的特征,从而提升了裂缝检测的准确性。通过实验证明所提模型显示出优于U-Net,Segnet,U2net等先进模型的精确性。在CFD数据集上mIoU,F1分别达到78.51%,0.868。这些成果表明,所提方法能有效提升道路裂缝检测的性能。 展开更多
关键词 裂缝检测 U-Net神经网络 深度可分离卷积 注意力机制 空间金字塔 小波变换
在线阅读 下载PDF
基于改进SE-Net和深度可分离残差的高光谱图像分类 被引量:1
12
作者 王燕 王振宇 《兰州理工大学学报》 CAS 北大核心 2024年第2期87-95,共9页
针对目前常见的用于高光谱图像分类的卷积神经网络参数数量多,训练时间长,对样本数量依赖性大的问题,提出一种适用于有限训练样本条件下基于改进压缩激活网络和深度可分离残差的分类网络MDSR&SE-Net.首先使用主成分分析对原始高光... 针对目前常见的用于高光谱图像分类的卷积神经网络参数数量多,训练时间长,对样本数量依赖性大的问题,提出一种适用于有限训练样本条件下基于改进压缩激活网络和深度可分离残差的分类网络MDSR&SE-Net.首先使用主成分分析对原始高光谱图像进行通道降维,然后通过三维卷积神经网络连接多特征残差结构,同时嵌入改进的SE模块提取高光谱图像的空间和光谱细节特征,最后将提取到的特征数据输入Softmax分类器激活分类.为了使网络更加轻量,通过在残差结构中使用深度可分离卷积和引入全局平均池化减少参数数量.实验结果显示,使用有限训练样本在三种常见高光谱数据集上总体分类精度均达到99%以上. 展开更多
关键词 高光谱图像 深度可分离卷积 残差网络 压缩激活网络
在线阅读 下载PDF
基于相似矩阵盲源分离与卷积神经网络的局部放电超声信号深度学习模式识别方法 被引量:58
13
作者 张重远 岳浩天 +2 位作者 王博闻 刘云鹏 罗世豪 《电网技术》 EI CSCD 北大核心 2019年第6期1900-1906,共7页
电气设备的故障类型与局部放电现象密切相关,有效提取和分析局部放电信号中的特征信息对故障类型判断和运维检修具有重要意义。针对局部放电超声信号的特点,提出了基于相似矩阵的盲源分离方法对原始超声信号进行预处理,有效提取局部放... 电气设备的故障类型与局部放电现象密切相关,有效提取和分析局部放电信号中的特征信息对故障类型判断和运维检修具有重要意义。针对局部放电超声信号的特点,提出了基于相似矩阵的盲源分离方法对原始超声信号进行预处理,有效提取局部放电的特征量。采用光纤传输的局部放电超声检测平台对4种类型的局部放电信号进行采集,并应用上述方法对信号数据预处理,将处理后的数据作为训练样本用于深度学习模式识别,选用卷积神经网络,最终识别准确率达到90%以上,提高了局部放电类型识别的准确性,为新一代电力系统的设备故障诊断提供了一种新方法。 展开更多
关键词 局部放电 超声波 盲源分离 相似矩阵 深度学习 卷积神经网络
在线阅读 下载PDF
基于深度分离卷积的情绪识别机器人即时交互研究 被引量:11
14
作者 徐桂芝 赵阳 +1 位作者 郭苗苗 金铭 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第10期161-168,共8页
情绪识别是人工智能领域的研究热点,人机交互系统若能感知人类的情感行为并能表达情感,将会使机器人与人类的交互更加自然。人类主要通过面部表情、语义语调、肢体语言等几个方面获取情感信息。以拥有高自由度的NAO机器人为应用平台,设... 情绪识别是人工智能领域的研究热点,人机交互系统若能感知人类的情感行为并能表达情感,将会使机器人与人类的交互更加自然。人类主要通过面部表情、语义语调、肢体语言等几个方面获取情感信息。以拥有高自由度的NAO机器人为应用平台,设计了机器人面部情绪识别和肢体情感表达的人机交互系统。首先,引入深度分离卷积算法对人脸表情(生气、恐惧、伤心、高兴、惊讶和中性)进行特征提取和分类,结果表明通过训练得到的网络模型对FER2013人脸表情测试集的预测正确率可以达到0.711;其次,设计NAO机器人的肢体动作,对6种面部情感做出了分类;最后,对机器人实时表达使用者的情绪状态进行了测试,反馈时间均在2 s内,并对连续10帧预测结果进行了统计分析。 展开更多
关键词 深度分离卷积 人形机器人 情感交互 情绪识别
在线阅读 下载PDF
基于深度可分离卷积和宽残差网络的医学影像超分辨率重建 被引量:7
15
作者 高媛 王晓晨 +1 位作者 秦品乐 王丽芳 《计算机应用》 CSCD 北大核心 2019年第9期2731-2737,共7页
为提高医学影像超分辨率的重建质量,提出了一种基于深度可分离卷积的宽残差超分辨率神经网络算法。首先,利用深度可分离卷积改进网络的残差块,扩宽残差块中卷积层的通道,将更多的特征信息传入了激活函数,使得网络中浅层低级图像特征更... 为提高医学影像超分辨率的重建质量,提出了一种基于深度可分离卷积的宽残差超分辨率神经网络算法。首先,利用深度可分离卷积改进网络的残差块,扩宽残差块中卷积层的通道,将更多的特征信息传入了激活函数,使得网络中浅层低级图像特征更容易地传播到高层,提高了医学影像超分辨率的重建质量;然后,采用组归一化的方法训练网络,将卷积层的通道维度划分为组,在每个组内计算归一化的均值和方差,使得网络训练过程更快地收敛,解决了深度可分离卷积扩宽通道数导致网络训练难度增加的问题,同时网络表现出更好的性能。实验结果表明,对比传统的最近邻插值、双三次插值超分辨率算法,以及基于稀疏表达的超分辨率算法,所提算法重建出的医学影像纹理细节更加丰富、视觉效果更加逼真。对比基于卷积神经网络的超分辨率算法,基于宽残差超分辨率神经网络算法和生成对抗网络超分辨率算法,所提算法在峰值信噪比(PSNR)和结构相似性(SSIM)上有显著的提升。 展开更多
关键词 超分辨率 宽残差 深度可分离卷积 组归一化 残差块
在线阅读 下载PDF
基于深度可分离与空洞卷积的轻量化小麦生育进程监测模型研究 被引量:4
16
作者 郑光 魏家领 +2 位作者 任艳娜 刘合兵 席磊 《江苏农业科学》 北大核心 2022年第20期226-232,共7页
小麦的栽培管理措施依赖于其生育进程的监测,而传统人工观测小麦生育信息的获取方式,不仅效率低而且无法满足实时、快速的监测需求。为了解决上述问题,本研究提出一种基于深度可分离和空洞卷积的轻量化小麦生育进程监测方法,开展对小麦... 小麦的栽培管理措施依赖于其生育进程的监测,而传统人工观测小麦生育信息的获取方式,不仅效率低而且无法满足实时、快速的监测需求。为了解决上述问题,本研究提出一种基于深度可分离和空洞卷积的轻量化小麦生育进程监测方法,开展对小麦生育进程自动识别的研究。通过对试验田小麦完整生育周期内物候特征的持续拍摄,得到小麦各生育期分类图像数据集,并使用去中心化、错位缩放、翻转变换的图像增强方式对小麦生育期数据集进行扩充;通过使用深度可分离卷积有效地降低了模型的参数量和训练时间,在此基础上加入空洞卷积技术扩大网络中的感受野,提高网络对边缘的特征学习能力,并借助残差网络的技术逐步加深神经网络的深度,构建小麦生育进程监测模型。结果表明,本研究提出的监测模型在识别准确率方面高于经典的VGG16、InceptionV3、ResNet50模型,达到了98.6%。参数规模降低至1.3 MB,相比于轻量级模型MobileNetV2降低了58%,同等环境下在识别速度方面较MobileNetV2提高了47%;同时,利用TensorFlow Serving对监测模型进行部署,遵循前后端分离,采用SpringBoot及BootStrap等技术框架,开发了小麦生育进程智能监测服务系统,系统具有很好的松耦合性和灵活性。本研究为小麦生育进程智能化识别提供了技术支撑,也为低分类场景设计轻量且高效的卷积神经网络模型提供了可借鉴的方法。 展开更多
关键词 小麦 生育期 深度可分离卷积 空洞卷积 智能服务
在线阅读 下载PDF
融合深度可分离小卷积核和CBAM的改进CNN故障诊断模型 被引量:6
17
作者 于洋 马军 +2 位作者 王晓东 朱江艳 刘桂敏 《电子测量技术》 北大核心 2022年第6期171-178,共8页
为了解决最大池化丢失信息和平均池化模糊特征的问题,同时提高模型时频图像识别效率,降低模型复杂度,提出一种采用深度可分离小卷积核进行降采样和CBAM的CNN网络模型对轴承进行故障诊断。首先,在除最后一层的池化层中,使用深度可分离小... 为了解决最大池化丢失信息和平均池化模糊特征的问题,同时提高模型时频图像识别效率,降低模型复杂度,提出一种采用深度可分离小卷积核进行降采样和CBAM的CNN网络模型对轴承进行故障诊断。首先,在除最后一层的池化层中,使用深度可分离小卷积层代替池化层,实现池化层的降采样功能。其次,在最后一层池化层引入CBAM,对时频图像所表征的故障特征给予更多的关注,以提高模型计算效率。再次,使用全局平均池化代替传统全连接层,进一步减少模型参数数量。最后,利用CWRU轴承振动数据和自制实验平台数据验证所提方法在滚动轴承故障诊断方面的有效性和可行性。实验结果表明,融合深度可分离小卷积核和CBAM改进的CNN模型有效减少了模型需要的训练参数和计算量,且在识别准确率方面取得了更优的性能。 展开更多
关键词 深度可分离卷积 CBAM 卷积神经网络 滚动轴承
在线阅读 下载PDF
基于深度可分离空洞卷积金字塔的变压器渗漏油检测 被引量:7
18
作者 赵文清 刘亮 +2 位作者 胡嘉伟 翟永杰 赵振兵 《智能系统学报》 CSCD 北大核心 2023年第5期966-974,共9页
为了降低影响并提高对变压器渗漏油巡检图像的检测效率,提出一种基于深度可分离空洞卷积金字塔的变压器渗漏油检测模型。首先,将空洞金字塔中普通卷积块修改为深度可分离卷积块,以此扩大金字塔感受野,使特征提取网络提取到的特征图语义... 为了降低影响并提高对变压器渗漏油巡检图像的检测效率,提出一种基于深度可分离空洞卷积金字塔的变压器渗漏油检测模型。首先,将空洞金字塔中普通卷积块修改为深度可分离卷积块,以此扩大金字塔感受野,使特征提取网络提取到的特征图语义信息更加丰富;然后,改进了特征提取阶段低阶语义特征与高阶语义特征融合过程,进一步增强特征提取网络产生特征图的语义信息;最后,为了避免经过多次卷积、池化操作后特征图语义信息的损失,在融合过程中引入空间注意力机制和通道注意力机制,进一步增强特征图中的语义信息。与UNet(convolutional networks for biomedical image segmentation)、PSPNet(pyramid scene parseing network)、DeepLabv3+(encoder-decoder with atrous separable convolution for semantic image segmentation)和MCNN(multi-class convolutional neural network)等算法进行对比实验发现,本文所提出网络检测模型效果好,查准率达到了76.85%,平均交并比达到了64.63%,召回率达到了73.56%,检测速率达到了30 f/s。为了验证本文提出方法的有效性,设计了消融实验,与基础网络模型相比,查准率提高了9.33%,平均交并比提高了7.15%,召回率提高了5.66%。 展开更多
关键词 变压器 渗漏油检测 语义信息 深度可分离空洞卷积金字塔 低阶特征 高阶特征 特征融合 注意力机制
在线阅读 下载PDF
快速3D-CNN结合深度可分离卷积对高光谱图像分类 被引量:2
19
作者 王燕 梁琦 《计算机科学与探索》 CSCD 北大核心 2022年第12期2860-2869,共10页
针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成... 针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。 展开更多
关键词 高光谱图像分类 空谱特征提取 三维卷积神经网络(3D-CNN) 深度可分离卷积(dsc) 深度学习
在线阅读 下载PDF
基于多尺度深度可分离卷积的低照度图像增强算法 被引量:13
20
作者 陈清江 顾媛 《计算机工程与科学》 CSCD 北大核心 2023年第10期1830-1837,共8页
为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特... 为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特征提取模块,提取不同尺度的特征信息;最后,对不同尺寸的特征图使用2种模块,将低层空间信息与高层语义信息充分融合,获得最终输出。用深度可分离卷积代替标准卷积可大大减少网络参数量与计算量。实验结果表明,所提算法能有效地提高图像的亮度和对比度,减少模型参数量,且图像纹理细节及色彩恢复较好。 展开更多
关键词 低照度图像增强 深度可分离卷积 空洞卷积 多尺度 网格效应
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部