期刊文献+
共找到607篇文章
< 1 2 31 >
每页显示 20 50 100
基于注意力循环神经网络的联合深度推荐模型 被引量:1
1
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
在线阅读 下载PDF
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
2
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
卷积循环神经网络的高光谱图像解混方法
3
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
基于循环神经网络的棒束通道流动参数实时计算方法研究
4
作者 李翔宇 解衡 《原子能科学技术》 北大核心 2025年第7期1386-1396,共11页
针对深度学习求解物理场方程时存在的算法不可解释性,训练模型时所需数据量大、训练时间长,且不能随意修改模型边界条件等问题,本文设计了一个可用于实时计算棒束通道内流速分布的循环神经网络(recurrent neural network,RNN)。该算法以... 针对深度学习求解物理场方程时存在的算法不可解释性,训练模型时所需数据量大、训练时间长,且不能随意修改模型边界条件等问题,本文设计了一个可用于实时计算棒束通道内流速分布的循环神经网络(recurrent neural network,RNN)。该算法以RNN作为基本结构,利用多松弛时间-格子玻尔兹曼方法(multiple relaxation time-lattice Boltzmann method,MRT-LBM)构造RNN的计算单元,利用浸入法和特征线法确定神经元的结构和数量,并利用顶盖驱动流模型、5×5棒束通道仿真计算和PIV测量结果验证算法的有效性。计算结果表明,RNN在计算上述两个模型的无量纲化流速分布时,与MRT-LBM和商业CFD软件相比,残差约为0.1,残差较模型入口处的流速小1个数量级。RNN在计算棒束通道截面的无量纲化流速时,消耗的计算时间约为0.005~0.03 s,仅为MRT-LBM的1/6~1/3,且计算结果基本与PIV的测量结果相符合。同时RNN所有的计算过程都有物理方程对应,因此RNN可以在保证计算精度的前提下极大提升计算速度,且具有可解释性。RNN可为反应堆数字孪生系统提供实时模拟流动参数的计算方法,进一步提升数字孪生系统对现实环境的模拟能力。 展开更多
关键词 反应堆数字孪生系统 棒束通道 深度学习 循环神经网络 多松弛时间-格子玻尔兹曼方法
在线阅读 下载PDF
基于循环神经网络的核电厂复合故障诊断方法
5
作者 陈逸龙 林萌 周士祺 《海军工程大学学报》 北大核心 2025年第1期36-42,共7页
核电厂单一故障识别的方法有很多,但是由于核电厂的复杂性,复合故障识别的难度较大,且传统故障诊断方法存在难以利用核电厂运行数据中时序信息的问题。针对上述问题,提出一种循环神经网络和多标签分类方法相结合的核电厂复合故障诊断方... 核电厂单一故障识别的方法有很多,但是由于核电厂的复杂性,复合故障识别的难度较大,且传统故障诊断方法存在难以利用核电厂运行数据中时序信息的问题。针对上述问题,提出一种循环神经网络和多标签分类方法相结合的核电厂复合故障诊断方法。该方法首先将故障数据切分为携带时序信息的输入样本;然后,通过循环神经网络提取故障样本中的时序特征;最后,通过多标签分类器完成多个故障标签的解耦输出,实现了复合故障的诊断。仿真实验验证了所提方法无论是对单一故障还是复合故障都具有良好的故障诊断效果。同时,还探究了不同循环神经单元和不同长度的输入样本对模型诊断效果的影响,结果表明:LSTM模型和GRU模型的效果优于常规RNN模型,且增加输入样本的长度并不一定能够提升模型诊断准确率。 展开更多
关键词 核电厂 循环神经网络 复合故障 多标签 深度学习
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
6
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
7
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 深度学习
在线阅读 下载PDF
基于深度自回归循环神经网络的边缘负载预测
8
作者 陈礼贤 梁杰 +3 位作者 黄一帆 陈哲毅 于正欣 陈星 《小型微型计算机系统》 CSCD 北大核心 2024年第2期359-366,共8页
为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度... 为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度变化的负载取得精确的预测.此外,这些方法通常将预测模型拟合到独立的时间序列上,进而进行单点负载实值预测.但是在实际边缘计算场景中,得到未来负载变化的概率分布情况会比直接预测未来负载的实值更具应用价值.为了解决上述问题,本文提出了一种基于深度自回归循环神经网络的边缘负载预测方法(Edge Load Prediction with Deep Auto-regressive Recurrent networks,ELP-DAR).所提出的ELP-DAR方法利用边缘负载时序数据训练深度自回归循环神经网络,将LSTM集成至S2S框架中,进而直接预测下一时间点负载概率分布的所有参数.因此,ELP-DAR方法能够高效地提取边缘负载的重要表征,学习复杂的边缘负载模式进而实现对高度变化的边缘负载精确的概率分布预测.基于真实的边缘负载数据集,通过大量仿真实验对所提出ELP-DAR方法的有效性进行了验证与分析.实验结果表明,相比于其他基准方法,所提出的ELP-DAR方法可以取得更高的预测精度,并且在不同预测长度下均展现出了优越的性能表现. 展开更多
关键词 边缘计算 负载预测 概率分布 深度自回归 循环神经网络
在线阅读 下载PDF
混合图神经网络和门控循环网络的短期光伏功率预测 被引量:4
9
作者 殷豪 李奕甸 +3 位作者 谢智锋 于慧 张展 王懿华 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期523-532,共10页
为了能从大量历史光伏发电数据中提取出有效的时序特征以及在非欧几里得域中的关联,建立了基于混合图神经网络以及门控循环网络的短期光伏功率预测模型。该模型首先通过最邻近分类算法生成气象及出力数据的最邻近图,再将其结合图神经网... 为了能从大量历史光伏发电数据中提取出有效的时序特征以及在非欧几里得域中的关联,建立了基于混合图神经网络以及门控循环网络的短期光伏功率预测模型。该模型首先通过最邻近分类算法生成气象及出力数据的最邻近图,再将其结合图神经网络作为编码器对气象及出力数据进行编码形成时间序列,最后通过门控循环网络以及全连接层解码输出光伏功率预测结果。通过仿真分析验证,该模型具有更优的特征挖掘能力和分析性能,能更好地突出某时间节点的气象及出力数据特征,适应天气突变带来特征变化,从而提升光伏预测整体模型的表达能力。 展开更多
关键词 神经网络 深度学习 光伏发电 功率预测 门控循环网络
在线阅读 下载PDF
基于改进门控循环神经网络的采煤机滚筒调高量预测 被引量:3
10
作者 齐爱玲 王雨 马宏伟 《工矿自动化》 CSCD 北大核心 2024年第2期116-123,共8页
采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采... 采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采用定长滑动时间窗法对获取的采煤机滚筒高度数据进行预处理,将输入数据划分为连续、大小可调的子序列,同时处理横向、纵向的特征信息。为提高模型预测效率,满足循环截割的实时性要求,提出了一种用因果卷积改进的门控循环神经网络(CC-GRU),对输入数据进行双重特征提取和双重数据过滤。CC-GRU利用因果卷积提前聚焦序列纵向的局部时间特征,以减少计算成本,提高运算速度;利用门控机制对卷积得到的特征进行序列化建模,以捕捉元素之间的长期依赖关系。实验结果表明,采用CC-GRU模型对采煤机滚筒调高量进行预测,平均绝对误差(MAE)为43.80 mm,平均绝对百分比误差(MAPE)为1.90%,均方根误差(RMSE)为50.35 mm,决定系数为0.65,预测时间仅为0.17 s;相比于长短时记忆(LSTM)神经网络、GRU、时域卷积网络(TCN),CC-GRU模型的预测速度较快且预测精度较高,能够更准确地对采煤机调高轨迹进行实时预测,为工作面煤层模型的建立和采煤机调高轨迹的预测提供了依据。 展开更多
关键词 采煤机 滚筒调高 煤岩识别 深度学习 门控循环神经网络 因果卷积
在线阅读 下载PDF
基于深度双向门控循环神经网络的制粉系统故障预警 被引量:6
11
作者 赵征 丁建平 《动力工程学报》 CAS CSCD 北大核心 2023年第5期598-605,共8页
为构建鲁棒性较强的状态估计模型,结合堆叠自编码器思想,提出一种基于深度双向门控循环神经网络的制粉系统状态估计及故障预警方法。首先,选取制粉系统正常运行状态变量历史数据作为深度双向门控循环神经网络的训练输入,然后利用网络强... 为构建鲁棒性较强的状态估计模型,结合堆叠自编码器思想,提出一种基于深度双向门控循环神经网络的制粉系统状态估计及故障预警方法。首先,选取制粉系统正常运行状态变量历史数据作为深度双向门控循环神经网络的训练输入,然后利用网络强大的特征学习能力,建立制粉系统正常状态估计模型。采用滑动窗口法构建制粉系统状态监测指标,确定指标阈值,利用火电厂制粉系统历史运行数据进行仿真。结果表明:相比于其他方法,深度双向门控循环神经网络模型具有更好的估计性能,且能够在故障发生前及时发出预警信息,达到早期故障诊断的目的。 展开更多
关键词 制粉系统 深度学习 双向门控循环神经网络 自编码器 故障预警
在线阅读 下载PDF
结合开发者依赖的图神经网络缺陷预测方法
12
作者 乔羽 徐涛 +2 位作者 张亚 文凤鹏 李强伟 《计算机科学》 北大核心 2025年第6期52-57,共6页
在软件开发过程中,及时识别和处理高风险缺陷模块是至关重要的。传统的软件缺陷预测方法主要基于代码相关的信息,但常常忽略了开发者个人特质对软件质量的影响。针对这一问题,提出了一种新型的结合开发者一致性依赖网络的软件缺陷预测模... 在软件开发过程中,及时识别和处理高风险缺陷模块是至关重要的。传统的软件缺陷预测方法主要基于代码相关的信息,但常常忽略了开发者个人特质对软件质量的影响。针对这一问题,提出了一种新型的结合开发者一致性依赖网络的软件缺陷预测模型DCN4SDP。首先利用开发者信息构建了一个开发者一致性依赖网络,并提取代码相关的度量作为网络的初始度量元,通过使用双向门控图神经网络学习网络结构上的节点特征。实验结果表明,DCN4SDP模型在多个标准数据集上的性能显著优于传统机器学习分类器和其他深度学习方法,AUC值达到了0.91,F1值达到了0.76,均显著高于其他对比模型。这些优势表明将开发者维度融入软件缺陷预测能够有效提升模型的预测能力和应用价值,且为未来的软件缺陷预测研究提供了新的思路和方向。 展开更多
关键词 软件缺陷预测 双向门控图神经网络 开发者信息 深度学习 神经网络 软件工程
在线阅读 下载PDF
基于SSA-BiGRU-CNN神经网络和波动数据修正的电动汽车短期负荷预测模型
13
作者 张钰声 曹敏 +1 位作者 雷宇 李龙 《电网与清洁能源》 北大核心 2025年第2期67-74,共8页
为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network... 为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network,CNN)的电动汽车短期负荷预测模型。构建BiGRU-CNN模型,并应用麻雀搜索算法(sparrowsearch algorithm,SSA)对BiGRU神经网络参数进行优化;利用BiGRU神经网络充分学习历史负荷数据的前、后向联系,采用CNN对历史负荷数据进行局部优化,并通过全连接层进行预测;考虑到天气数据内部规律性不强,采用BiGRU-CNN神经网络对天气数据所带来的负荷波动进行误差预测和修正。以陕西某区域电动汽车充电站为例,分别预测预见期为4 h和24 h的电动汽车负荷,实验结果表明,所提模型无论在工作日还是双休日都具有很高的预测精度,验证了所提方法的有效性。 展开更多
关键词 电动汽车 负荷预测 双向门控循环单元 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
14
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
15
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
在线阅读 下载PDF
基于双向循环神经网络的河流相储层预测方法及应用 被引量:13
16
作者 朱剑兵 王兴谋 +1 位作者 冯德永 隋志强 《石油物探》 EI CSCD 北大核心 2020年第2期250-257,共8页
河流相储层通常具有横向变化快、地震反射特征多解性强的特点,因而河流相储层地震预测难度大。将测井信息与地震多属性相结合实现河流相储层地震预测,传统的方法包括多元线性回归方法、地质统计学方法和BP神经网络等。人工智能深度学习... 河流相储层通常具有横向变化快、地震反射特征多解性强的特点,因而河流相储层地震预测难度大。将测井信息与地震多属性相结合实现河流相储层地震预测,传统的方法包括多元线性回归方法、地质统计学方法和BP神经网络等。人工智能深度学习方法为井震信息的融合提供了新的解决思路。通过构建井震学习样本,提出了一种基于双向循环神经网络的井震融合储层预测方法。从储层沉积连续性角度,将地震数据看成具有纵向联系的时序数据,以CD地区100余口井馆上段地层的储层和非储层为学习样本,构建双向循环神经网络储层预测方法,通过训练优选超参数建立井震融合的深度学习储层预测模型。该预测模型应用于CD地区河流相储层预测的效果显著,细小河道形态清楚,预测精度高,有效指导了CD地区的勘探部署。 展开更多
关键词 循环神经网络 深度学习 样本构建 沉积序列 地震储层预测 沉积约束
在线阅读 下载PDF
基于布谷鸟算法优化独立循环神经网络深度学习的超短期风电功率预测 被引量:20
17
作者 邓亚平 段建东 +2 位作者 贾颢 王璐 同向前 《电网与清洁能源》 北大核心 2021年第9期18-26,共9页
风电功率数据具有强烈的时序特性,其序列数据的特征提取,是进行风电功率准确预测的重要前提。为此,引入了更长、更深层次的多隐层独立循环神经网络来最大程度上提取可反映输入风电功率序列数据的本质特征量,进而建立起特征量与风电功率... 风电功率数据具有强烈的时序特性,其序列数据的特征提取,是进行风电功率准确预测的重要前提。为此,引入了更长、更深层次的多隐层独立循环神经网络来最大程度上提取可反映输入风电功率序列数据的本质特征量,进而建立起特征量与风电功率之间的非线性关系。然而,在建立深层独立循环神经网络时,存在模型超参数设置与优化困难的问题。为此,进一步提出结合布谷鸟算法对独立循环神经网络关键超参数进行优化设计的方法。最终,结合某风电场实际数据,将模型预测结果与实测数据进行对比,验证所提方法能够有效提高预测精度。 展开更多
关键词 布谷鸟算法 独立循环神经网络 深度学习 风电功率 功率预测
在线阅读 下载PDF
循环相关熵和一维浅卷积神经网络轴承故障诊断 被引量:1
18
作者 李辉 徐伟烝 《机械科学与技术》 CSCD 北大核心 2024年第4期600-610,共11页
针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循... 针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循环相关熵能在低信噪比环境下有效提取故障特征的优点。首先,计算轴承故障振动信号的循环相关熵函数、循环相关熵谱密度函数和广义循环平稳度;其次,将一维归一化的广义循环平稳度作为一维浅卷积神经网络的输入层,通过一维浅卷积神经网络自动实现故障特征提取和模式分类;最后,将CCe-1D SCNN方法应用于电机轴承故障特征提取和分类,实验结果表明:CCe-1D SCNN方法在低噪声比情况下仍能保持很高的模式识别正确率,为一种自动故障特征提取和模式识别的有效方法。 展开更多
关键词 循环相关熵 一维浅卷积神经网络 深度学习 循环平稳信号 故障诊断
在线阅读 下载PDF
基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型 被引量:14
19
作者 李浩君 方璇 戴海容 《计算机应用研究》 CSCD 北大核心 2022年第3期732-738,共7页
针对现有深度知识追踪模型存在输入习题间复杂关系捕获能力弱、无法有效处理长序列输入数据等问题,提出了基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型(KTSA-BiGRU)。首先,将学习者的历史学习交互序列数据映射为实值向量序... 针对现有深度知识追踪模型存在输入习题间复杂关系捕获能力弱、无法有效处理长序列输入数据等问题,提出了基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型(KTSA-BiGRU)。首先,将学习者的历史学习交互序列数据映射为实值向量序列;其次,以实值向量序列作为输入训练双向GRU神经网络,利用双向GRU神经网络建模学习者的学习过程;最后,使用自注意力机制捕获练习题之间的关系,根据双向GRU神经网络输出的隐向量和注意力权重计算学习者正确回答下一问题的概率。实验在三个公共数据集上的性能分析优于现有的知识追踪模型,能提高深度知识追踪的预测精度。 展开更多
关键词 知识追踪 深度学习 双向GRU神经网络 自注意力机制
在线阅读 下载PDF
基于双向循环神经网络的汉语语音识别 被引量:9
20
作者 李鹏 杨元维 +4 位作者 高贤君 杜李慧 周意 蒋梦月 张净波 《应用声学》 CSCD 北大核心 2020年第3期464-471,共8页
当前基于深度神经网络模型中,虽然其隐含层可设置多层,对复杂问题适应能力强,但每层之间的节点连接是相互独立的,这种结构特性导致了在语音序列中无法利用上下文相关信息来提高识别效果,而传统的循环神经网络虽然做出了改进,但是只能对... 当前基于深度神经网络模型中,虽然其隐含层可设置多层,对复杂问题适应能力强,但每层之间的节点连接是相互独立的,这种结构特性导致了在语音序列中无法利用上下文相关信息来提高识别效果,而传统的循环神经网络虽然做出了改进,但是只能对上文信息进行利用。针对以上问题,该文采用可以同时利用语音序列中上下文相关信息的双向循环神经网络模型与深度神经网络模型相结合,并应用于语音识别。构建具有5层隐含层的模型,其中第3层为双向循环神经网络结构,其他层采用深度神经网络结构。实验结果表明:加入了双向循环神经网络结构的模型与其他模型相比,较好地提高了识别正确率;噪声对双向循环神经网络汉语识别有重要影响,尤其是训练集和测试集附加噪声类型不同时,单一的含噪声语音的训练模型无法适应不同噪声类型的语音识别;调整神经网络模型中隐含层神经元数量后,识别正确率并不是一直随着隐含层中神经元数量的增加而增加,神经元数量数目增加到一定程度后正确率出现了降低的趋势。 展开更多
关键词 语音识别 深度学习 深度神经网络 循环神经网络
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部