期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
基于MobileNet与YOLOv3的轻量化卷积神经网络设计 被引量:50
1
作者 邵伟平 王兴 +1 位作者 曹昭睿 白帆 《计算机应用》 CSCD 北大核心 2020年第S01期8-13,共6页
针对当前基于卷积神经网络的目标检测算法在小型图像处理计算平台中兼容性较差、计算能力低下以及网络训练过程中占用内存过大的问题,提出了一种轻量化卷积神经网络(CNN)YOLO-Slim,并利用YOLOv3验证可行性。首先,通过网络基础构架的改... 针对当前基于卷积神经网络的目标检测算法在小型图像处理计算平台中兼容性较差、计算能力低下以及网络训练过程中占用内存过大的问题,提出了一种轻量化卷积神经网络(CNN)YOLO-Slim,并利用YOLOv3验证可行性。首先,通过网络基础构架的改变以及将标准卷积替换为深度可分离卷积实现了网络参数与计算量的大幅度降低;其次,依据网络层对平均精度均值(mAP)的影响程度剪枝网络层,实现网络的层间剪枝;然后,使用中位数的通道剪枝策略实现对网络的层内剪枝,最终,完成轻量化网络的设计。实验结果表明,在VOC2007测试数据集上所设计的YOLO-Slim较原始YOLOv3在模型大小方面减小了90%;mAP为76.42%,识别速度为16 ms。能够为微型图像计算平台提供快速精确的目标识别能力。 展开更多
关键词 深度学习 卷积神经网络 MobileNet yolov3 轻量化网络
在线阅读 下载PDF
基于YOLOv4神经网络的小龙虾质量检测方法 被引量:16
2
作者 王淑青 黄剑锋 +1 位作者 张鹏飞 王娟 《食品与机械》 北大核心 2021年第3期120-124,194,共6页
设计了一种采用YOLOv4深度学习算法的小龙虾质量检测模型,该算法在网络架构、数据处理、特征提取等方面进行了优化。自主拍摄小龙虾图片并进行数据扩充,使用LableImage平台进行数据标注,在Darknet框架下进行网络模型训练,通过对比,模型... 设计了一种采用YOLOv4深度学习算法的小龙虾质量检测模型,该算法在网络架构、数据处理、特征提取等方面进行了优化。自主拍摄小龙虾图片并进行数据扩充,使用LableImage平台进行数据标注,在Darknet框架下进行网络模型训练,通过对比,模型最终性能均高于其他常见目标检测模型,其检测准确率达97.8%,平均检测时间为37 ms,表明该方法能够有效检测生产过程中的小龙虾质量。 展开更多
关键词 深度学习 卷积神经网络 小龙虾 yolov4 目标检测
在线阅读 下载PDF
基于深度卷积神经网络的甲状腺超声图像良恶性结节识别方法研究 被引量:2
3
作者 姚文君 殷超然 +3 位作者 朱宏庆 江健敏 庞小溪 孙怡宁 《安徽医科大学学报》 CAS 北大核心 2023年第5期854-858,共5页
目的探讨深度卷积神经网络在甲状腺结节超声图像的自动检测和良恶性分类中应用价值。方法回顾性选取1012幅甲状腺结节的超声图像并对其进行标记,构建YOLOv5网络模型,精准定位甲状腺结节所在位置并自动裁减结节所在区域,同时构建GoogLeNe... 目的探讨深度卷积神经网络在甲状腺结节超声图像的自动检测和良恶性分类中应用价值。方法回顾性选取1012幅甲状腺结节的超声图像并对其进行标记,构建YOLOv5网络模型,精准定位甲状腺结节所在位置并自动裁减结节所在区域,同时构建GoogLeNet网络模型对裁减后结节的图像进行良恶性分类。结果在所采集的数据集中,目标检测网络对甲状腺结节位置检测的平均精确度均值为96.2%;分类网络对良恶性结节分类的敏感度为0.885,特异度为0.822,准确度为0.866,AUC值为0.92,显著高于AlexNet模型(AUC=0.81)、VGG模型(AUC=0.86)和MobileNet模型(AUC=0.76)。结论深度卷积神经网络模型对超声图像中的甲状腺良恶性结节具有较高的定位和识别能力,有助于提高影像自动诊断的准确性。 展开更多
关键词 甲状腺结节 超声图像 深度卷积神经网络 yolov5网络
在线阅读 下载PDF
4D卷积神经网络的自闭症功能磁共振图像分类 被引量:2
4
作者 郭磊 王骏 +4 位作者 丁维昌 潘祥 邓赵红 施俊 王士同 《智能系统学报》 CSCD 北大核心 2021年第6期1021-1029,共9页
静息态功能磁共振图像是随着时间变化的一系列三维图像。已有的3D卷积过程本质上是对三维图像数据或二维图像+时间维数据进行处理,无法有效地融合静息态功能磁共振图像的时间轴信息。为此,本文提出了新型的4D卷积神经网络识别模型。具... 静息态功能磁共振图像是随着时间变化的一系列三维图像。已有的3D卷积过程本质上是对三维图像数据或二维图像+时间维数据进行处理,无法有效地融合静息态功能磁共振图像的时间轴信息。为此,本文提出了新型的4D卷积神经网络识别模型。具体而言,通过对输入的fMRI使用四维卷积核执行四维卷积,在自闭症患者的功能磁共振图像中,从空间和时间上提取特征,从而捕获图像在时间序列上的变化信息。所开发的模型从输入图像中生成多个信息通道,最终的特征表示结合了所有通道的信息。实验结果表明,在保证模型泛化性能的前提下,该方法融合了功能像的全局信息,并且采集了功能像随时间变化的趋势信息,进而解决了用卷积神经网络处理三维图像随时间变化的分类问题。 展开更多
关键词 深度学习 卷积神经网络 自闭症 4D卷积 功能磁共振成像 特征提取 特征融合 图像分类
在线阅读 下载PDF
基于改进的轻量化卷积神经网络火龙果检测方法 被引量:31
5
作者 王金鹏 高凯 +1 位作者 姜洪喆 周宏平 《农业工程学报》 EI CAS CSCD 北大核心 2020年第20期218-225,F0003,共9页
在自然环境下对火龙果进行实时检测是实现火龙果自动化采摘的必要条件之一。该研究提出了一种轻量级卷积神经网络YOLOv4-LITE火龙果检测方法。YOLOv4集成了多种优化策略,YOLOv4的检测准确率比传统的YOLOv3高出10%。但是YOLOv4的骨干网... 在自然环境下对火龙果进行实时检测是实现火龙果自动化采摘的必要条件之一。该研究提出了一种轻量级卷积神经网络YOLOv4-LITE火龙果检测方法。YOLOv4集成了多种优化策略,YOLOv4的检测准确率比传统的YOLOv3高出10%。但是YOLOv4的骨干网络复杂,计算量大,模型体积较大,不适合部署在嵌入式设备中进行实时检测。将YOLOv4的骨干网络CSPDarknet-53替换为MobileNet-v3,MobileNet-v3提取特征可以显著提高YOLOv4的检测速度。为了提高小目标的检测精度,分别设置在网络第39层以及第46层进行上采样特征融合。使用2513张不同遮挡环境下的火龙果图像作为数据集进行训练测试,试验结果表明,该研究提出的轻量级YOLOv4-LITE模型Average Precision(AP)值为96.48%,F1值为95%,平均交并比为81.09%,模型大小仅为2.7 MB。同时对比分析不同骨干网络,MobileNet-v3检测速度大幅度提升,比YOLOv4的原CSPDarknet-53平均检测时间减少了160.32 ms。YOLOv4-LITE在GPU上检测一幅1200×900的图像只需要2.28 ms,可以在自然环境下实时检测,具有较强的鲁棒性。相比现有的目标检测算法,YOLOv4-LITE的检测速度是SSD-300的9.5倍,是Faster-RCNN的14.3倍。进一步分析了多尺度预测对模型性能的影响,利用4个不同尺度特征图融合预测,相比YOLOv4-LITE平均检测精度提高了0.81%,但是平均检测时间增加了10.33 ms,模型大小增加了7.4 MB。因此,增加多尺度预测虽然提高了检测精度,但是检测时间也随之增加。总体结果表明,该研究提出的轻量级YOLOv4-LITE在检测速度、检测精度和模型大小方面具有显著优势,可应用于自然环境下火龙果检测。 展开更多
关键词 模型 深度学习 果实检测 卷积神经网络 yolov4-LITE 实时检测
在线阅读 下载PDF
融合卷积神经网络与视觉注意机制的苹果幼果高效检测方法 被引量:14
6
作者 宋怀波 江梅 +1 位作者 王云飞 宋磊 《农业工程学报》 EI CAS CSCD 北大核心 2021年第9期297-303,共7页
果实表型数据高通量、自动获取是果树新品种育种研究的基础,实现幼果精准检测是获取生长数据的关键。幼果期果实微小且与叶片颜色相近,检测难度大。为了实现自然环境下苹果幼果的高效检测,采用融合挤压激发块(Squeeze-and-Excitation bl... 果实表型数据高通量、自动获取是果树新品种育种研究的基础,实现幼果精准检测是获取生长数据的关键。幼果期果实微小且与叶片颜色相近,检测难度大。为了实现自然环境下苹果幼果的高效检测,采用融合挤压激发块(Squeeze-and-Excitation block,SE block)和非局部块(Non-Local block,NL block)两种视觉注意机制,提出了一种改进的YOLOv4网络模型(YOLOv4-SENL)。YOLOv4模型的骨干网络提取高级视觉特征后,利用SE block在通道维度整合高级特征,实现通道信息的加强。在模型改进路径聚合网络(Path Aggregation Network,PAN)的3个路径中加入NL block,结合非局部信息与局部信息增强特征。SE block和NL block两种视觉注意机制从通道和非局部两个方面重新整合高级特征,强调特征中的通道信息和长程依赖,提高网络对背景与果实的特征捕捉能力。最后由不同尺寸的特征图实现不同大小幼果的坐标和类别计算。经过1920幅训练集图像训练,网络在600幅测试集上的平均精度为96.9%,分别比SSD、Faster R-CNN和YOLOv4模型的平均精度提高了6.9百分点、1.5百分点和0.2百分点,表明该算法可准确地实现幼果期苹果目标检测。模型在480幅验证集的消融试验结果表明,仅保留YOLOv4-SENL中的SE block比YOLOv4模型精度提高了3.8百分点;仅保留YOLOv4-SENL中3个NL block视觉注意模块比YOLOv4模型的精度提高了2.7百分点;将YOLOv4-SENL中SE block与NL blocks相换,比YOLOv4模型的精度提高了4.1百分点,表明两种视觉注意机制可在增加少量参数的基础上显著提升网络对苹果幼果的感知能力。该研究结果可为果树育种研究获取果实信息提供参考。 展开更多
关键词 机器视觉 图像处理 苹果幼果 果实检测 yolov4 卷积神经网络 视觉注意机制
在线阅读 下载PDF
卷积神经网络算法在工件抓取中的应用 被引量:4
7
作者 田跃欣 吴芬芬 《机床与液压》 北大核心 2020年第15期76-80,共5页
为提高机械手臂夹取物件的准确率,提出基于深度学习法的3D视觉辨识与抓取系统。该视觉系统结合GPU和深度影像Open CV等函数库,分别进行影像拾取、深度数据运算、坐标转换、影像轮廓搜寻和卷积类神经网络模型训练等。采用YOLOv2算法判别... 为提高机械手臂夹取物件的准确率,提出基于深度学习法的3D视觉辨识与抓取系统。该视觉系统结合GPU和深度影像Open CV等函数库,分别进行影像拾取、深度数据运算、坐标转换、影像轮廓搜寻和卷积类神经网络模型训练等。采用YOLOv2算法判别目标物体的种类和中心点,并利用轮廓搜寻方法找出物体的角度信息,作为机械手臂操作目标点;通过坐标转换将相机坐标转为机械手臂坐标,由TCP/IP通信传至运动控制系统进行物件夹取。实验结果表明:不同位置的所有零件辨识准确率均在82%以上,抓取误差在1~4 mm内,符合工业生产的要求。 展开更多
关键词 深度学习 卷积神经网络算法 目标检测 yolov2算法 工件抓取 机器视觉
在线阅读 下载PDF
基于改进神经网络下果园自主寻筐模型的研究
8
作者 张立 《农机使用与维修》 2024年第6期123-126,共4页
果园自主寻筐是指利用先进的技术和装置,让机器或机器人能够在果园中自主地识别、定位和采摘并放入果篮的过程。传统果园自主寻筐模型对于环境变化、光照条件、果篮外观变化等因素的适应能力较弱,容易受到外界干扰影响,导致寻筐任务的... 果园自主寻筐是指利用先进的技术和装置,让机器或机器人能够在果园中自主地识别、定位和采摘并放入果篮的过程。传统果园自主寻筐模型对于环境变化、光照条件、果篮外观变化等因素的适应能力较弱,容易受到外界干扰影响,导致寻筐任务的稳定性和可靠性不高。该文基于改进的神经网络技术,结合YOLOv4-Tiny目标检测算法进行果筐实时目标检测,并优化数据采集、预处理、模型训练等,模型优化后采用大量实地数据进行验证和测试,评估了模型在不同环境下的稳定性和准确性。试验结果表明,改进的神经网络模型在果园自主寻筐任务中表现出良好的效果,具有较高的寻找准确率和鲁棒性。研究结果旨在为果园智能化管理和机械化作业提供了新的技术支持和理论基础。 展开更多
关键词 果园自主寻筐 yolov4-tiny算法 实时目标检测 深度信息获取 优化
在线阅读 下载PDF
面向目标识别的轻量化混合卷积神经网络 被引量:8
9
作者 刘晋 邓洪敏 +1 位作者 徐泽林 杨洋 《计算机应用》 CSCD 北大核心 2021年第S02期5-12,共8页
针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络。此混合网络主干特征提... 针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络。此混合网络主干特征提取网络采用轻量级MobileNeXt网络模型,并使用改进后RFB(Receptive Field Block)模型来增强特征提取网络,进而增大感受野;引入通道注意力机制SE(Squeeze-and-Excitation)模块,过滤筛选出高质量信息,使整个网络模型对特征提取更加高效。实验结果表明,在PASCAL VOC 2007数据集上,基于YOLOv4的轻量化混合神经网络模型大小仅占20.6 MB,很大程度上降低了原YOLOv4模型参数量,mAP(mean Average Precision)达到82.51%,帧处理速率为29.7 frame/s。,有较好的检测效果和较强的鲁棒性。 展开更多
关键词 深度学习 目标检测 卷积神经网络 yolov4 轻量化网络
在线阅读 下载PDF
基于轻量型卷积神经网络的马铃薯种薯芽眼检测算法 被引量:10
10
作者 黄杰 王相友 +3 位作者 吴海涛 刘书玮 杨笑难 刘为龙 《农业工程学报》 EI CAS CSCD 北大核心 2023年第9期172-182,共11页
马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络C... 马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络CSPDarkNet-53为GhostNetV2轻量型特征提取网络;其次,在YOLOv4的颈部网络中,使用深度可分离卷积(depthwise separable convolution,DW)模块代替普通卷积块进一步降低模型计算量;最后,更改边界框损失函数为具有角度代价的边界框损失函数(SIoU),避免因预测框的位置不确定,而影响模型收敛速度和整体检测性能。结果表明,改进后芽眼检测模型参数量为12.04 M,使用笔记本电脑CPU检测单张图片的时间为0.148 s,从试验台收集的测试数据显示平均精度为89.13%。相对于其他主干特征提取网络CSPDarkNet-53、MobileNetV1、MobileNetV2、MobileNetV3、GhostNetV1,其检测精度分别高出1.85、0.75、2.67、4.17、1.89个百分点;与同类目标检测模型SSD、Faster-RCNN、EifficientDet、CenterNet、YOLOv7相比,在检测精度上,分别高出23.26、27.45、10.51、18.09、2.13个百分点,在检测时间上,分别降低0.007、6.754、1.891、1.745、0.422 s,且模型参数量具有明显优势。该研究为小目标物体检测和模型部署提供技术支撑。 展开更多
关键词 图像识别 卷积神经网络 马铃薯芽眼检测 小目标 yolov4 GhostNetV2
在线阅读 下载PDF
改进的卷积神经网络行人检测方法 被引量:11
11
作者 冯媛 李敬兆 《计算机工程与设计》 北大核心 2020年第5期1452-1457,共6页
提出基于YOLOV3和DenseNet相结合的轻量化行人检测算法。加入HSV图像处理模块强化行人特征,利用卷积神经网络提取行人特征,通过k均值聚类算法筛选预测框,借鉴特征金字塔的思想做高低层特征融合和预测,利用Dense Block结构对网络轻量化... 提出基于YOLOV3和DenseNet相结合的轻量化行人检测算法。加入HSV图像处理模块强化行人特征,利用卷积神经网络提取行人特征,通过k均值聚类算法筛选预测框,借鉴特征金字塔的思想做高低层特征融合和预测,利用Dense Block结构对网络轻量化进行完善,在国际广泛使用的行人数据集上进行一系列实验。实验结果表明,检测速度比现有的优秀目标检测模型YOLOV3提升了8倍,模型大小为YOLOV3的1/107,所提方法在测试集上的实时性和准确率都有所提高。 展开更多
关键词 行人检测 深度学习 卷积神经网络 DenseNet yolov3 K均值聚类算法
在线阅读 下载PDF
基于卷积神经网络的马铃薯芽眼检测识别研究 被引量:6
12
作者 史方青 王虎林 黄华 《中国农机化学报》 北大核心 2022年第6期159-165,共7页
为快速、准确识别马铃薯芽眼,提高种薯发芽率,提出一种基于卷积神经网络的马铃薯芽眼识别方法。针对多视角和不同程度重叠的马铃薯芽眼图像,通过数据增广及图像预处理建立数据库。在此基础上,利用YOLOv3网络的高性能特征提取特性,实现... 为快速、准确识别马铃薯芽眼,提高种薯发芽率,提出一种基于卷积神经网络的马铃薯芽眼识别方法。针对多视角和不同程度重叠的马铃薯芽眼图像,通过数据增广及图像预处理建立数据库。在此基础上,利用YOLOv3网络的高性能特征提取特性,实现马铃薯芽眼的快速准确识别。结果表明:YOLOv3网络对含有单个无遮挡芽眼的样本、含有多个有遮挡芽眼的样本及含有机械损伤、虫眼及杂质的样本均能够实现良好稳定的识别,最终检测精确度P为97.97%,召回率R为96.61%,调和平均值F1为97%,识别平均精度mAP为98.44%,单张检测时间为0.018 s。对比分析YOLOv4-tiny及SSD等网络后可知,YOLOv3模型可同时满足马铃薯芽眼识别的精度与速度要求。因此,YOLOv3网络对马铃薯芽眼识别具有良好的鲁棒性,为马铃薯切种机实现自动化切种奠定基础。 展开更多
关键词 目标检测 yolov3 卷积神经网络 马铃薯芽眼 深度学习
在线阅读 下载PDF
基于改进YOLOv7-tiny的车辆目标检测算法
13
作者 赵海丽 许修常 潘宇航 《兵工学报》 北大核心 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 yolov7-tiny算法 深度强力残差卷积 轻量级高效层聚合网络模块
在线阅读 下载PDF
基于卷积神经网络的带钢表面缺陷图像检测算法 被引量:5
14
作者 杜孟新 毕玉 杜鹏昊 《火力与指挥控制》 CSCD 北大核心 2022年第8期132-135,共4页
为解决带钢生产过程中产品表面缺陷自动检测问题,通过分析不同类型视觉检测算法特点,选取Faster-RCNN、YOLOv4和CenterNet 3种算法,采用Python语言实现3种算法设计并应用于带钢表面缺陷检测中。通过对带钢表面6种典型缺陷1800张图像进... 为解决带钢生产过程中产品表面缺陷自动检测问题,通过分析不同类型视觉检测算法特点,选取Faster-RCNN、YOLOv4和CenterNet 3种算法,采用Python语言实现3种算法设计并应用于带钢表面缺陷检测中。通过对带钢表面6种典型缺陷1800张图像进行训练和测试,YOLOv4和Faster-RCNN算法的识别精度达70%以上,在带钢实际生产过程中具有较高应用价值。实验对比不同缺陷的识别精度,对于斑块、划痕、麻点、夹杂等边缘清晰对比度高的缺陷,适合采用机器识别算法进行检测。 展开更多
关键词 带钢生产 图像识别 卷积神经网络 Faster-RCNN yolov4 CenterNet
在线阅读 下载PDF
基于改进YOLOv4轻量化网络的机械手状态检测算法
15
作者 郭立新 毕素涛 赵明扬 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期769-775,共7页
YOLOv4网络结构复杂、参数较多、模型较大,因此极大地限制了其在工业上的应用.针对这一问题,提出一种改进YOLOv4的轻量化网络.首先,采用GhostNet代替YOLOv4主干网络,简化网络结构,降低模型参数量;其次,为了弥补网络简化后带来的精度损失... YOLOv4网络结构复杂、参数较多、模型较大,因此极大地限制了其在工业上的应用.针对这一问题,提出一种改进YOLOv4的轻量化网络.首先,采用GhostNet代替YOLOv4主干网络,简化网络结构,降低模型参数量;其次,为了弥补网络简化后带来的精度损失,在其余两个输出特征层后加入Spatial Pyramid Pooling结构,加强特征提取;再次,加入Squeeze and Excitation Network通道注意力机制,增强网络重要信息提取能力;最后,将损失函数CIOU替换为SIOU,加快模型收敛,进而产生更好的模型.实验结果表明,在满足工业要求的前提下,改进后的轻量化网络相比于YOLOv4网络,在牺牲较小检测精度的情况下,模型参数量和计算量大幅下降,同时检测速度得到了提升,从而证明了改进算法在光纤插拔任务中机械手夹持状态识别检测的有效性. 展开更多
关键词 yolov4 GhostNet 深度可分离卷积 注意力机制 损失函数
在线阅读 下载PDF
YOLOv4-Tiny的改进轻量级目标检测算法 被引量:26
16
作者 何湘杰 宋晓宁 《计算机科学与探索》 CSCD 北大核心 2024年第1期138-150,共13页
目标检测是深度学习的重要分支领域,大量的边缘设备需要轻量级的目标检测算法,但现有的轻量级的通用目标检测算法存在检测精度低、检测速度慢的问题。针对这一问题,提出了一种基于注意力机制的YOLOv4-Tiny的改进算法。调整了原有的YOLOv... 目标检测是深度学习的重要分支领域,大量的边缘设备需要轻量级的目标检测算法,但现有的轻量级的通用目标检测算法存在检测精度低、检测速度慢的问题。针对这一问题,提出了一种基于注意力机制的YOLOv4-Tiny的改进算法。调整了原有的YOLOv4-Tiny算法的主干网络的结构,引入了ECA注意力机制,使用空洞卷积改进了传统的SPP结构为DC-SPP结构,并提出了CSATT注意力机制,与特征融合网络PAN形成CSATT-PAN的颈部网络,提高了网络的特征融合能力。提出的YOLOv4-CSATT算法和原始YOLOv4-Tiny算法相比,在检测速度基本持平的情况下,对于信息的敏感程度以及分类的准确程度有了明显的提高,在VOC数据集上精度提高了12.3个百分点,在COCO数据集上高出了6.4个百分点。在VOC数据集上,相比Faster RCNN、SSD、Efficientdet-d1、YOLOv3-Tiny、YOLOv4-MobileNetv1、YOLOv4-MobileNetv2、PP-YOLO算法在精度上分别高出3.3、5.5、6.3、17.4、10.3、0.9和0.6个百分点,在召回率上分别高出2.8、7.1、4.2、18.0、12.2、2.1和4.0个百分点,FPS达到94。通过提出CSATT注意力机制提高了模型对于空间的通道信息的捕捉能力,并结合ECA注意力机制和特征融合金字塔算法,提高了模型的特征融合的能力以及目标检测精度。 展开更多
关键词 目标检测 yolov4-tiny算法 注意力机制 轻量级神经网络 特征融合
在线阅读 下载PDF
多特征融合的YOLOv4-tiny带钢表面缺陷检测方法研究
17
作者 李锦达 汤勃 +2 位作者 孙伟 孔建益 林中康 《计算机应用与软件》 北大核心 2024年第12期208-213,254,共7页
微小表面缺陷自动识别是带钢生产过程中的研究难点之一。为了提高带钢表面缺陷检测的准确性,提出一种多特征融合的YOLOv4-tiny深度学习方法。引入Inception结构与多尺度信息。提取原始图片的方向梯度直方图特征(HOG),并与主干网络所提... 微小表面缺陷自动识别是带钢生产过程中的研究难点之一。为了提高带钢表面缺陷检测的准确性,提出一种多特征融合的YOLOv4-tiny深度学习方法。引入Inception结构与多尺度信息。提取原始图片的方向梯度直方图特征(HOG),并与主干网络所提取的高层特征相融合,作为特征金字塔结构的输入。实验结果表明,该算法在测试集中带钢表面缺陷mAP达到93.99%,相比原网络提高了13.57百分点,网络参数量相比于原网络减少约21万,网络检测精度有较大的提升。 展开更多
关键词 带钢 表面缺陷检测 特征融合 yolov4-tiny 深度学习
在线阅读 下载PDF
基于YOLOv4-tiny的溜筒卸料煤尘检测方法 被引量:11
18
作者 李海滨 孙远 +1 位作者 张文明 李雅倩 《光电工程》 CAS CSCD 北大核心 2021年第6期70-83,共14页
煤炭港在使用装船机的溜筒卸载煤的过程中会产生扬尘,港口为了除尘,需要先对粉尘进行检测。为解决粉尘检测问题,本文提出一种基于深度学习(YOLOv4-tiny)的溜筒卸料煤粉尘的检测方法。利用改进的YOLOv4-tiny算法对溜筒卸料粉尘数据集进... 煤炭港在使用装船机的溜筒卸载煤的过程中会产生扬尘,港口为了除尘,需要先对粉尘进行检测。为解决粉尘检测问题,本文提出一种基于深度学习(YOLOv4-tiny)的溜筒卸料煤粉尘的检测方法。利用改进的YOLOv4-tiny算法对溜筒卸料粉尘数据集进行训练和测试,由于检测算法无法获知粉尘浓度,本文将粉尘分为四类分别进行检测,最后统计四类粉尘的检测框总面积,通过对这些数据做加权和计算近似判断粉尘浓度大小。实验结果表明,四类粉尘的检测精度(AP)分别为93.98%、93.57%、80.03%和57.43%,平均检测精度(mAP)为81.27%,接近YOLOv4的83.38%,而检测速度(FPS)为25.1,高于YOLOv4的13.4。该算法较好地平衡了粉尘检测的速率和精度,可用于实时的粉尘检测以提高抑制溜筒卸料产生的煤粉尘的效率。 展开更多
关键词 煤粉尘检测 yolov4-tiny 深度学习 目标检测
在线阅读 下载PDF
基于检测增强型YOLOv3-tiny的道路场景行人检测 被引量:5
19
作者 田亮 金积德 郑庆祥 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第4期441-448,共8页
为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人... 为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人横向特征的丢失;其次使用Hardswish作为卷积层的激活函数优化网络性能;最后使用GC(globe context)自注意力机制获得全文特征信息.在分类回归网络部分,采用三尺度检测策略,提升小尺度行人目标的检测精度;使用k-means++算法重新生成数据集锚框,提高网络收敛速度.构建行人检测数据集并分为训练集和测试集,对DOEYT算法的性能进行试验验证.结果表明,非对称最大池化、Hardswish函数、GC自注意力机制分别使平均准确率AP提高14.4%、7.9%、10.8%;DOEYT算法在测试集上检测的平均准确率高达91.2%,检测速度为103帧/s,可见该算法可快速准确地检测行人,降低交通事故发生的风险. 展开更多
关键词 行人检测 深度学习 卷积神经网络 非对称最大池化 激活函数 自注意力机制 多尺度检测 yolov3-tiny
在线阅读 下载PDF
基于改进YOLOv4的多目标车辆检测算法 被引量:7
20
作者 江屾 殷时蓉 +2 位作者 罗天洪 郑讯佳 张洪杰 《计算机工程与设计》 北大核心 2024年第4期1181-1188,共8页
针对现有检测方法存在小目标车辆漏检率高以及夜间车辆误检率高的问题,提出一种基于改进YOLOv4的多目标检测算法。引入深度可分离卷积代替标准卷积,减少模型的参数量与计算量。在保留YOLOv4输出层的同时,增加一层网格为104×104的... 针对现有检测方法存在小目标车辆漏检率高以及夜间车辆误检率高的问题,提出一种基于改进YOLOv4的多目标检测算法。引入深度可分离卷积代替标准卷积,减少模型的参数量与计算量。在保留YOLOv4输出层的同时,增加一层网格为104×104的输出层,提升算法对小目标车辆的检测性能。在Head部分引入Inceptionv3结构,采用K-means++聚类算法重新确定锚框,进一步提高算法对小目标车辆的检测性能。实验结果表明,算法相比改进前,在不降低检测速度的同时,其mAP增加2.44%,模型大小减少1/3,具有良好的鲁棒性。 展开更多
关键词 车辆检测 深度学习 yolov4 深度可分离卷积 Inceptionv3 K-means++ 多目标识别
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部