期刊文献+
共找到313篇文章
< 1 2 16 >
每页显示 20 50 100
基于深度卷积生成式对抗网络的船型特征认知与条件生成方法 被引量:1
1
作者 杜林 李胜忠 +3 位作者 李广年 舒跃辉 刘子祥 赵峰 《船舶力学》 EI CSCD 北大核心 2024年第8期1162-1174,共13页
船体型值与图片一样也是序列相关型数据,所以用于生成图片的神经网络模型也能生成船型数据。由于船舶种类繁多、需求复杂,本文研究重点从船舶水线上下、船艏、舯、艉等区域位置特征,和船舶设计中普遍存在球艏、尾轴、艏部外板升高等全... 船体型值与图片一样也是序列相关型数据,所以用于生成图片的神经网络模型也能生成船型数据。由于船舶种类繁多、需求复杂,本文研究重点从船舶水线上下、船艏、舯、艉等区域位置特征,和船舶设计中普遍存在球艏、尾轴、艏部外板升高等全局几何特征的条件生成需求出发,训练条件深度卷积生成式对抗网络模型(Con⁃ditional Deep Convolutional Generative Adversarial Networks)来实现两种特征的条件认知与生成。首先,将实现船型区域位置特征与全局几何特征的条件生成作为目标,分别建立条件深度卷积生成式对抗网络模型;然后,针对两类特征设置若干从易到难的不同分割方案和特征种类,使神经网络能够循序渐进地完成条件生成任务;最后,通过对训练过程和生成结果进行对比,初步证明所研究方法用于解决船型特征条件生成问题的可行性。本研究延续了作者之前的研究成果,属于基于计算机视觉技术的船型智能设计方法领域,旨在进一步探索引入人工智能实现船型智能设计的可行性方法。 展开更多
关键词 船型智能设计 深度卷积生成式对抗网络 计算机视觉
在线阅读 下载PDF
基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断 被引量:9
2
作者 古莹奎 石昌武 陈家芳 《噪声与振动控制》 CSCD 北大核心 2024年第1期111-118,共8页
针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉... 针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉姆角场图,按比例划分训练集与测试集,将训练集样本与随机向量输入到深度卷积生成对抗网络模型中,交替训练生成器与判别器,达到纳什平衡,生成与原始样本类似的生成样本,从而实现故障样本的增广。用原始样本与生成的增广样本训练卷积神经网络分类模型,完成行星齿轮箱的故障识别。实验结果表明,所提方法能够有效提升样本不均衡条件下的行星齿轮箱故障诊断精度,使之达到99.15%,且能使收敛速度更快。 展开更多
关键词 故障诊断 格拉姆角场 深度卷积生成对抗网络 卷积神经网络 行星齿轮箱
在线阅读 下载PDF
ECG-QGAN:基于量子生成对抗网络的心电图生成式信息系统
3
作者 瞿治国 陈韦龙 +2 位作者 孙乐 刘文杰 张彦春 《计算机研究与发展》 北大核心 2025年第7期1622-1638,共17页
据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,E... 据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,ECG)临床数据.作为一门新兴学科,量子计算可通过利用量子叠加和纠缠特性,能够探索更大、更复杂的状态空间,进而有利于生成同临床数据一样的高质量和多样化的ECG数据.为此,提出了一种基于量子生成对抗网络(QGAN)的ECG生成式信息系统,简称ECG-QGAN.其中QGAN由量子双向门控循环单元(quantum bidirectional gated recurrent unit,QBiGRU)和量子卷积神经网络(quantum convolutional neural network,QCNN)组成.该系统利用量子的纠缠特性提高生成能力,以生成与现有临床数据一致的ECG数据,从而可以保留心脏病患者的心跳特征.该系统的生成器和判别器分别采用QBiGRU和QCNN,并应用了基于矩阵乘积状态(matrix product state,MPS)和树形张量网络(tree tensor network,TTN)所设计的变分量子电路(variational quantum circuit,VQC),可以使该系统在较少的量子资源下更高效地捕捉ECG数据信息,生成合格的ECG数据.此外,该系统应用了量子Dropout技术,以避免训练过程中出现过拟合问题.最后,实验结果表明,与其他生成ECG数据的模型相比,ECG-QGAN生成的ECG数据具有更高的平均分类准确率.同时它在量子位数量和电路深度方面对当前噪声较大的中尺度量子(noise intermediate scale quantum,NISQ)计算机是友好的. 展开更多
关键词 生成式信息系统 心电图 量子生成对抗网络 量子双向门控循环单元 量子卷积神经网络
在线阅读 下载PDF
基于时序插补生成式对抗网络的卫星遥测参数异常检测方法
4
作者 杜晓龙 白萌 《空间科学学报》 北大核心 2025年第4期1087-1097,共11页
为确保卫星的安全稳定运行,及时进行遥测参数的数据挖掘、态势分析及异常响应至关重要.鉴于现有方法在处理卫星遥测参数异常时存在的局限性,提出一种基于时序插补和生成式对抗网络的异常检测方法.该方法通过一维卷积神经网络提取时序特... 为确保卫星的安全稳定运行,及时进行遥测参数的数据挖掘、态势分析及异常响应至关重要.鉴于现有方法在处理卫星遥测参数异常时存在的局限性,提出一种基于时序插补和生成式对抗网络的异常检测方法.该方法通过一维卷积神经网络提取时序特征,并利用生成式对抗网络对遥测参数的分布进行建模,创新性地采用基于插补的检测方式,有效提高了异常检测的准确性和对复杂异常情况的适应能力.基于真实卫星数据和公开数据集的测试结果表明,与多种已有方法相比,本文方法在多数数据集上获得了最高的F_(1)分数,并在不同的异常浓度下显示出良好的稳定性.这一研究成果为卫星任务的地面运控进行卫星态势分析和异常处置提供了有力的决策支持. 展开更多
关键词 遥测数据 时序异常检测 一维卷积神经网络 生成式对抗网络 插补生成
在线阅读 下载PDF
地震属性驱动的条件生成对抗网络沉积微相模型构建
5
作者 刘昕 孙胜 +3 位作者 张立强 蔡明俊 鲁玉 卢文娟 《中国石油大学学报(自然科学版)》 北大核心 2025年第4期1-10,共10页
由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,... 由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,挖掘对砂地比参数关联性较强的参数;将优选地震属性图像作为卷积神经网络模型的输入,构建砂地比预测模型,可视化砂地比预测结果,与井相图作为联合约束条件,训练条件生成对抗网络,构建沉积微相生成模型,实现沉积微相的精确建模。应用本方法对东部某油田进行沉积微相建模研究。结果表明,条件生成对抗网络沉积微相模型能精确刻画复杂地质模式,井点吻合率达到94.1%。 展开更多
关键词 条件生成对抗网络 深度学习 沉积微相 砂地比 灰色关联 卷积神经网络
在线阅读 下载PDF
基于深度卷积生成式对抗网络的菌草丙二醛含量可见/近红外光谱反演 被引量:2
6
作者 叶大鹏 陈晨 +3 位作者 李慧琳 雷莹晓 翁海勇 瞿芳芳 《智慧农业(中英文)》 CSCD 2023年第3期132-141,共10页
[目的/意义]菌草是多年生可用作饲料与生物质能源的草本植物,在温带种植需克服越冬问题。低温胁迫会对菌草的生长发育造成不利影响。丙二醛(Malondialdehyde,MDA)作为诊断菌草低温胁迫状态的有力诊断指标,利用光谱技术反演MDA含量,可快... [目的/意义]菌草是多年生可用作饲料与生物质能源的草本植物,在温带种植需克服越冬问题。低温胁迫会对菌草的生长发育造成不利影响。丙二醛(Malondialdehyde,MDA)作为诊断菌草低温胁迫状态的有力诊断指标,利用光谱技术反演MDA含量,可快速无损地评估菌草生长动态,为菌草育种及低温胁迫诊断提供参考。[方法]本研究基于6个品种的菌草植株,设置低温胁迫组与常温对照组,获取菌草苗期的可见/近红外光谱(Visible/Near Infrared Spectrum,VIS/NIR)数据与叶片MDA含量信息,分析低温胁迫条件下菌草MDA含量及其光谱反射率均相应增加的变化趋势;为提升模型的检测效果,提出了改进的一维深度卷积生成式对抗网络(Deep Convolutional Generative Adversarial Networks,DCGAN)用于样本数量增广,并建立基于随机森林(Random Forest,RF)、偏最小二乘回归(Partial Least Squares Regression,PLSR)以及卷积神经网络(Convolutional Neural Networks,CNN)算法的MDA光谱定量检测模型。[结果和讨论] DCGAN可优化模型的可靠性与MDA检测精度,且DCGAN联合RF模型可以得到最佳的检测效果,其中预测集决定系数Rp2为0.7922,均方根误差为2.4063,残差预测偏差(Residual Predictive Deviation,RPD)为2.1937。[结论]本研究利用DCGAN进行样本数量增广,能显著提升基于光谱数据的模型对菌草MDA含量的反演精度与预测性能。 展开更多
关键词 菌草 可见/近红外光谱 深度卷积生成式对抗网络 低温胁迫 机器学习
在线阅读 下载PDF
改进深度卷积生成式对抗网络的文本生成图像
7
作者 李云红 朱绵云 +3 位作者 任劼 苏雪平 周小计 于惠康 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期1875-1883,共9页
针对深度卷积生成式对抗网络(DCGAN)模型高维文本输入表示的稀疏性导致以文本为条件生成的图像结构缺失和图像不真实的问题,提出了一种改进深度卷积生成式对抗网络模型CA-DCGAN。采用深度卷积网络和循环文本编码器对输入的文本进行编码... 针对深度卷积生成式对抗网络(DCGAN)模型高维文本输入表示的稀疏性导致以文本为条件生成的图像结构缺失和图像不真实的问题,提出了一种改进深度卷积生成式对抗网络模型CA-DCGAN。采用深度卷积网络和循环文本编码器对输入的文本进行编码,得到文本的特征向量表示。引入条件增强(CA)模型,通过文本特征向量的均值和协方差矩阵产生附加的条件变量,代替原来的高维文本特征向量。将条件变量与随机噪声结合作为生成器的输入,并在生成器的损失中额外加入KL损失正则化项,避免模型训练过拟合,使模型可以更好的收敛,在判别器中使用谱约束(SN)层,防止其梯度下降太快造成生成器与判别器不平衡训练而发生模式崩溃的问题。实验验证结果表明:所提模型在Oxford-102-flowers和CUB-200数据集上生成的图像质量较alignDRAW、GAN-CLS、GAN-INT-CLS、StackGAN(64×64)、StackGAN-v1(64×64)模型更好且接近于真实样本,初始得分值最低分别提高了10.9%和5.6%,最高分别提高了41.4%和37.5%,FID值最低分别降低了11.4%和8.4%,最高分别降低了43.9%和42.5%,进一步表明了所提模型的有效性。 展开更多
关键词 深度卷积生成式对抗网络 文本生成图像 文本特征表示 条件增强 KL正则化
在线阅读 下载PDF
深度生成式故障诊断模型研究 被引量:2
8
作者 黄汉坤 岑健 +3 位作者 赵必创 司伟伟 王玮樾 潘黄楠 《机床与液压》 北大核心 2025年第4期205-213,共9页
深度生成模型因强大的生成能力而备受关注。随着研究的深入,深度生成模型成功应用于故障诊断领域,并取得良好的效果。系统介绍传统深度生成式模型受限玻尔兹曼机以及目前主流的深度生成式模型生成对抗网络和变分自编码器;对生成对抗网... 深度生成模型因强大的生成能力而备受关注。随着研究的深入,深度生成模型成功应用于故障诊断领域,并取得良好的效果。系统介绍传统深度生成式模型受限玻尔兹曼机以及目前主流的深度生成式模型生成对抗网络和变分自编码器;对生成对抗网络典型变体进行分类和梳理,包括基于模型结构改进和基于损失函数改进。同时,将变分自编码器典型变体分为无监督VAE和有监督VAE,并进行系统总结。最后,从样本问题、模型泛化能力、构建新模型3个角度探讨了现有深度生成式模型面临的挑战,并提出未来的研究方向。 展开更多
关键词 故障诊断 深度生成式模型 生成对抗网络 变分自编码器
在线阅读 下载PDF
Transformer和生成对抗网络相结合的图像修复
9
作者 林旭 王永雄 +3 位作者 陈俊帆 张凌樾 谢鑫宇 朱珺怡 《控制工程》 北大核心 2025年第7期1311-1319,共9页
现有图像修复模型无法高质量地修复大面积缺损的图像。针对此问题,提出了一种Transformer和生成对抗网络相结合的图像修复模型。首先,设计了一种新型掩码自适应输入模块,用于从输入图像中提取未被掩码遮蔽的图像块;其次,利用Transforme... 现有图像修复模型无法高质量地修复大面积缺损的图像。针对此问题,提出了一种Transformer和生成对抗网络相结合的图像修复模型。首先,设计了一种新型掩码自适应输入模块,用于从输入图像中提取未被掩码遮蔽的图像块;其次,利用Transformer从有效图像块中提取全局上下文信息,增强模型对缺损区域的补全能力;再次,使用快速傅里叶卷积(fast Fourier convolution,FFC)模块增强模型的细节修复能力,并消除输出图像中的伪影;最后,利用判别器网络对抗训练以提升整体网络的性能。利用所提模型对Place2数据集进行图像修复,测试结果表明:当掩码比例为50%~60%时,修复结果的峰值信噪比达到了19.7482 dB,结构相似性(structural similarity,SSIM)达到了0.7147。 展开更多
关键词 深度学习 图像修复 TRANSFORMER 生成对抗网络 快速傅里叶卷积
在线阅读 下载PDF
基于深度卷积生成对抗网络的半生成式视频隐写方案
10
作者 林洋平 刘佳 +2 位作者 陈培 张明书 杨晓元 《计算机应用》 CSCD 北大核心 2023年第1期169-175,共7页
生成式隐写通过生成足够自然或真实的含密样本来隐藏秘密消息,是信息隐藏方向的研究热点,但目前在视频隐写领域的研究还比较少。结合数字化卡登格的思想,提出一种基于深度卷积生成对抗网络(DCGAN)的半生成式视频隐写方案。该方案中,设... 生成式隐写通过生成足够自然或真实的含密样本来隐藏秘密消息,是信息隐藏方向的研究热点,但目前在视频隐写领域的研究还比较少。结合数字化卡登格的思想,提出一种基于深度卷积生成对抗网络(DCGAN)的半生成式视频隐写方案。该方案中,设计了基于DCGAN的双流视频生成网络,用来生成视频的动态前景、静态后景与时空掩模三个部分,并以随机噪声驱动生成不同的视频。方案中的发送方可设定隐写阈值,在掩模中自适应地生成数字化卡登格,并将其作为隐写与提取的密钥;同时以前景作为载体,实现信息的最优嵌入。实验结果表明,该方案生成的含密视频具有良好的视觉质量,Frechet Inception距离(FID)值为90,且嵌入容量优于现有的生成式隐写方案,最高可达0.11 bpp,能够更高效地传输秘密消息。 展开更多
关键词 视频隐写 生成式 深度学习 深度卷积生成对抗网络 对抗性训练 数字化卡登格
在线阅读 下载PDF
基于深度卷积生成式对抗网络的人脸恢复方法 被引量:4
11
作者 吴晓燕 钱真坤 《计算机应用与软件》 北大核心 2020年第8期207-212,共6页
针对人脸复原过程中出现失真和重要细节丢失的问题,提出一种基于深度卷积生成式对抗网络的人脸恢复方法。使用人脸恢复网络对风格化的图像提取人脸视觉特征,通过结合面部属性提供的语义信息来生成具有真实感的人脸图像;利用识别网络判... 针对人脸复原过程中出现失真和重要细节丢失的问题,提出一种基于深度卷积生成式对抗网络的人脸恢复方法。使用人脸恢复网络对风格化的图像提取人脸视觉特征,通过结合面部属性提供的语义信息来生成具有真实感的人脸图像;利用识别网络判别恢复图像与真实图像之间的相似度,以及相应面部属性匹配的一致性;提出一种人脸恢复损失函数,有效保留面部细节的同时生成与真实图像属性相匹配的清晰图像。实验结果表明,对于不同风格化的人脸图像,该方法可以获得真实且属性匹配的人脸图像,性能明显优于其他方法。 展开更多
关键词 深度卷积 生成式对抗网络 人脸恢复 风格迁移
在线阅读 下载PDF
生成式深度学习在目标导向分子设计中的应用进展
12
作者 王纪峰 汪莹 《中国材料进展》 北大核心 2025年第5期424-435,450,共13页
分子设计作为化学与材料科学中的一项核心任务,面临着在庞大的化学空间中高效筛选并开发具备特定功能的分子的问题,传统方法在效率和探索性方面存在明显局限。近年来,生成式深度学习的兴起为分子设计提供了自动化与智能化的新路径。综... 分子设计作为化学与材料科学中的一项核心任务,面临着在庞大的化学空间中高效筛选并开发具备特定功能的分子的问题,传统方法在效率和探索性方面存在明显局限。近年来,生成式深度学习的兴起为分子设计提供了自动化与智能化的新路径。综述了生成式深度学习在分子设计中的应用进展,首先对不同分子表示方法(如SMILES、分子图和三维结构表示)进行比较,分析了各自的优缺点。随后,综合评估了3种主流生成式模型:生成对抗网络(GAN)、变分自动编码器(VAE)和去噪扩散概率模型(DDPM),并探讨了生成式模型在目标导向分子设计中的应用,重点分析不同模型在分子生成质量与性质优化方面的差异。最后,基于现有技术的研究进展,提出了未来生成式模型在分子设计领域的研究方向。 展开更多
关键词 分子生成 生成式深度学习 生成对抗网络 变分自动编码器 去噪扩散概率模型 模型性能评估框架 分子表示
在线阅读 下载PDF
基于深度卷积生成对抗网络场景生成的间歇式分布式电源优化配置 被引量:30
13
作者 顾洁 刘书琪 +1 位作者 胡玉 孟璐 《电网技术》 EI CSCD 北大核心 2021年第5期1742-1749,共8页
风电和光伏等间歇性分布式电源(distributed generation,DG)在配电网中接入比例不断提高,对配电网规划影响显著,需对其出力的不确定性进行建模,以提升含DG的配电网规划的效益与实用性。建立了考虑出力不确定性的DG双层优化配置模型。通... 风电和光伏等间歇性分布式电源(distributed generation,DG)在配电网中接入比例不断提高,对配电网规划影响显著,需对其出力的不确定性进行建模,以提升含DG的配电网规划的效益与实用性。建立了考虑出力不确定性的DG双层优化配置模型。通过改进的条件深度卷积生成对抗网络模型对DG出力的不确定性进行建模,并在模型中加入月份标签信息以生成面向规划的风光联合出力场景;基于高斯混合模型确定月份标签对应的风光出力的上下限,从而刻画DG出力的不确定性范围。最后,考虑DG出力的运行边界,建立了社会综合成本最小化的DG双层优化配置模型。IEEE 33节点算例验证表明,提出的DG优化配置方案能够提升DG的接入容量,有效降低社会综合成本,提高配电网运行的经济性。 展开更多
关键词 不确定性 场景生成 条件深度卷积生成对抗网络 高斯混合模型 双层优化配置
在线阅读 下载PDF
基于深度卷积生成对抗神经网络预测气窜方向 被引量:8
14
作者 冯其红 李玉润 +3 位作者 王森 任佳伟 周代余 范坤 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期20-27,共8页
注气开发是目前油田开发最有效的EOR方法之一,但注气开发面临见气时间早、气体突进严重等一系列问题。通过气窜方向预测能够及时调整工作制度,避免问题发生。利用深度卷积对抗神经网络建立渗透率场和注气后气相饱和度分布的动态映射关系... 注气开发是目前油田开发最有效的EOR方法之一,但注气开发面临见气时间早、气体突进严重等一系列问题。通过气窜方向预测能够及时调整工作制度,避免问题发生。利用深度卷积对抗神经网络建立渗透率场和注气后气相饱和度分布的动态映射关系,通过输入渗透率场的数据进行图像映射,得到不同时间的气相饱和度分布,预测气窜方向。结果表明:深度卷积方法在提取渗透率特征方面表现出良好性能;采用图像的结构相似性指数(SSIM)作为检验指标,将用对抗神经网络方法建立的气相饱和度分布与商业数值模拟器预测结果进行对比,二者结构相似度大于0.9;深度卷积生成对抗网络(DC-GAN)能够有效地预测注入气体在油藏中的气窜方向。 展开更多
关键词 深度卷积 对抗神经网络 结构相似性指数 气相饱和度
在线阅读 下载PDF
基于改进深度卷积对抗生成网络的肺结节良恶性分类 被引量:4
15
作者 李莉 张浩洋 乔璐 《计算机工程》 CAS CSCD 北大核心 2020年第12期262-269,共8页
为提高肺结节良恶性识别的准确率,构建改进深度卷积对抗生成网络(DCGAN)框架与半监督模糊C均值(FCM)聚类结合的SFDG肺结节良恶性识别模型。将带有良恶性等级标签的肺结节图像输入到DCGAN框架,使得只有来源分类能力的判别器网络同时具备... 为提高肺结节良恶性识别的准确率,构建改进深度卷积对抗生成网络(DCGAN)框架与半监督模糊C均值(FCM)聚类结合的SFDG肺结节良恶性识别模型。将带有良恶性等级标签的肺结节图像输入到DCGAN框架,使得只有来源分类能力的判别器网络同时具备肺结节等级分类能力。在判别过程中运用半监督FCM聚类方法,对输入肺结节图像进行特征提取和量化,将输出的当前图像所属类别概率及判别结果与真实结果进行比较来调整网络参数。通过设定加权损失函数最大概率提高模型识别准确率,训练得出具有良好鲁棒性的网络模型。实验结果表明,改进模型的判别器网络具有良好的肺结节良恶性分类能力,准确率高达90.96%。 展开更多
关键词 良恶性分类 卷积神经网络 特征量化 深度卷积对抗生成网络 半监督模糊C均值方法
在线阅读 下载PDF
基于深度卷积生成对抗网络的图像识别算法 被引量:7
16
作者 刘恋秋 《液晶与显示》 CAS CSCD 北大核心 2020年第4期383-388,共6页
针对传统深度卷积生成网络收敛速度慢、稳定性较差的问题,本文在传统深度卷积生成对抗网络的基础上,提出了深度卷积生成对抗网络的优化算法。首先在预处理部分,融合了Canny算子和Prewitt算子的多个方向的卷积核来初始化输入图片参数,同... 针对传统深度卷积生成网络收敛速度慢、稳定性较差的问题,本文在传统深度卷积生成对抗网络的基础上,提出了深度卷积生成对抗网络的优化算法。首先在预处理部分,融合了Canny算子和Prewitt算子的多个方向的卷积核来初始化输入图片参数,同时训练模块。为了减少训练时间,将训练分为3个阶段,每个阶段都采用不同的损失函数,从而提升网络的收敛速度及识别效果。最后再将训练后的判别网络中的卷积神经网络用来提取图像特征。LFW和CIFAR-100的实验证明,本文提出的算法具有很高的可行性和有效性,比传统生成对抗网络、CNN等图像识别具有更高的识别成功率,达到89.5%,为生成对抗网络在计算机视觉领域的应用提供了有益的参考。 展开更多
关键词 生成对抗网络 深度卷积 特征提取 计算机视觉
在线阅读 下载PDF
基于深度卷积对抗网络的电磁频谱异常检测
17
作者 嵇海鹏 张江 +1 位作者 乔晓强 张涛 《电讯技术》 北大核心 2024年第5期710-716,共7页
为了解决电磁频谱异常检测精度不高的问题,在深度卷积神经对抗网络(Deep Convolution Generative Adversarial Network,DCGAN)的基础上加入了编码器(Encoder)用来重构频谱数据。编码器首先将真实频谱数据编码为低维特征表示,生成器通过... 为了解决电磁频谱异常检测精度不高的问题,在深度卷积神经对抗网络(Deep Convolution Generative Adversarial Network,DCGAN)的基础上加入了编码器(Encoder)用来重构频谱数据。编码器首先将真实频谱数据编码为低维特征表示,生成器通过学习编码后的低维特征生成重构频谱数据,判别器负责将重构频谱数据与真实频谱数据进行区分,并通过对抗性训练逐渐提高模型重构频谱数据的能力,最后计算重构频谱数据与真实频谱数据的均方误差,判别异常。实验结果表明,该模型能够在多个频段下实现有效的电磁频谱异常检测,在TV频段下,干信比为-5 dB时,相比于现有电磁频谱异常检测方法,所提方法的平均检测性能提升了18%以上。 展开更多
关键词 电磁频谱异常检测 深度卷积对抗网络(dcgan) 频谱重构
在线阅读 下载PDF
基于生成式对抗网络的高光谱影像分类
18
作者 郑猛猛 葛小三 《遥感信息》 CSCD 北大核心 2024年第1期83-92,共10页
高光谱遥感影像智能解译是实现高光谱遥感应用的重要研究任务之一。针对生成式对抗网络在高光谱遥感影像分类中空谱特征利用不足的问题,提出了一种基于CVAE-GAN的高光谱遥感影像分类对抗网络算法(hyperspectral remote sensing classifi... 高光谱遥感影像智能解译是实现高光谱遥感应用的重要研究任务之一。针对生成式对抗网络在高光谱遥感影像分类中空谱特征利用不足的问题,提出了一种基于CVAE-GAN的高光谱遥感影像分类对抗网络算法(hyperspectral remote sensing classification based on CVAE-CGAN,HCVAE-CGAN),通过搭建1D-CNN分类模型和2D-CNN分类模型,训练判别器识别空谱特征,利用CVAE替代生成器结构生成影像光谱特征和空间特征,通过encode模块处理训练集得到空谱特征值,并将空谱特征值解码生成图像光谱,随后比对原始图像进行decode网络模型的优化,最后利用生成样本对分类器进行训练。实验结果表明,HCVAE-CGAN方法在小样本训练中有更好的检测性能,在Indian Pines和Pavia University数据集中的总体精度分别提高了2.85个百分点和3.92个百分点。 展开更多
关键词 高光谱图像分类 生成式对抗网络 分类方法 深度学习
在线阅读 下载PDF
基于生成对抗门控卷积网络的文档图像印章消除
19
作者 伍贵宾 杨宗元 +2 位作者 熊永平 张兴 王伟 《计算机科学》 CSCD 北大核心 2024年第1期198-206,共9页
发票和文档上的印章严重影响文字识别的准确率,因此印章消除技术在文档识别和文档增强的预处理过程中发挥着重要作用。然而,现有的阈值分割方法和基于深度学习的方法存在印章消除不全以及会修改背景像素等问题。文中提出了一个两阶段式... 发票和文档上的印章严重影响文字识别的准确率,因此印章消除技术在文档识别和文档增强的预处理过程中发挥着重要作用。然而,现有的阈值分割方法和基于深度学习的方法存在印章消除不全以及会修改背景像素等问题。文中提出了一个两阶段式印章消除网络SealErase。第一阶段是一个用于生成包含印章位置信息的二值化掩膜的U型分割网络,第二阶段是一个用于进行精细化印章消除的修复网络。由于目前缺乏公开的用于印章消除的成对数据集,现有的方法无法设计像素级的评价指标来衡量生成图像的质量。并且,利用配对的训练集训练神经网络可以有效提高网络的性能。为此,文中兼顾真实场景的泛化性以及对噪声的鲁棒性构建了一个包含8000个样本的高仿真的印章消除数据集。其中的印章分为两种:真实文档图像中的印章和合成的印章。为了客观地评价SealErase的性能,文中设计了基于图像生成质量和被印章遮盖的字符识别准确率的综合评价指标用于评估SealErase网络的消除性能。在构建的印章消除数据集上对比了现有的印章消除模型,实验结果表明,SealErase网络在图像生成质量的评价指标中的峰值信噪比相比最先进的方法提升了26.79%,平均结构相似性指标提升了4.48%。经过SealErase网络进行印章消除后,被印章遮盖的字符识别准确率提高了38.86%。SealErase在真实场景下同样可以有效消除印章并保留被遮盖的文字。 展开更多
关键词 印章消除 图像修复 印章生成 生成式对抗网络 门控卷积 SealErase
在线阅读 下载PDF
基于深度卷积生成对抗网络的地震初至拾取 被引量:14
20
作者 周创 居兴国 +1 位作者 李子昂 刘小民 《石油物探》 EI CSCD 北大核心 2020年第5期795-803,共9页
地震记录初至拾取质量往往受限于地震数据的复杂性,在陆地和浅海地震数据中尤为明显。为了更高效地拾取初至,提出了一种基于深度卷积生成对抗网络(DCGAN)的地震数据初至拾取方法,其关键在于构建一个适用于地震数据初至拾取的DCGAN,包含... 地震记录初至拾取质量往往受限于地震数据的复杂性,在陆地和浅海地震数据中尤为明显。为了更高效地拾取初至,提出了一种基于深度卷积生成对抗网络(DCGAN)的地震数据初至拾取方法,其关键在于构建一个适用于地震数据初至拾取的DCGAN,包含生成器与判别器两部分。生成器由一个全卷积神经网络(FCN)构成,用于学习地震炮集数据到初至波之间的特征映射;判别器由一个卷积神经网络(CNN)构成,用于辅助生成器训练。基于DCGAN的初至拾取方法的实现分为三步:数据预处理、网络训练和预测拾取。通过对不同卷积层数的网络结构的对比分析,确定了一个最优的DCGAN结构。一旦DCGAN的训练完成,利用其完成一炮地震数据的初至拾取仅需几秒的时间。将DCGAN方法应用于实际数据初至拾取并与现有初至拾取方法(如长短时窗比(STA/LTA)法和峰度赤池信息量准则(AIC)法)的拾取结果相比较,结果表明基于DCGAN的初至拾取方法的精度更高,能满足生产需要。 展开更多
关键词 生成对抗网络 卷积神经网络 深度学习 地震数据 初至拾取 网络结构 卷积神经网络 网络训练
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部