期刊文献+
共找到941篇文章
< 1 2 48 >
每页显示 20 50 100
基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断 被引量:9
1
作者 古莹奎 石昌武 陈家芳 《噪声与振动控制》 CSCD 北大核心 2024年第1期111-118,共8页
针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉... 针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉姆角场图,按比例划分训练集与测试集,将训练集样本与随机向量输入到深度卷积生成对抗网络模型中,交替训练生成器与判别器,达到纳什平衡,生成与原始样本类似的生成样本,从而实现故障样本的增广。用原始样本与生成的增广样本训练卷积神经网络分类模型,完成行星齿轮箱的故障识别。实验结果表明,所提方法能够有效提升样本不均衡条件下的行星齿轮箱故障诊断精度,使之达到99.15%,且能使收敛速度更快。 展开更多
关键词 故障诊断 格拉姆角场 深度卷积生成对抗网络 卷积神经网络 行星齿轮箱
在线阅读 下载PDF
基于深度卷积生成对抗网络场景生成的间歇式分布式电源优化配置 被引量:27
2
作者 顾洁 刘书琪 +1 位作者 胡玉 孟璐 《电网技术》 EI CSCD 北大核心 2021年第5期1742-1749,共8页
风电和光伏等间歇性分布式电源(distributed generation,DG)在配电网中接入比例不断提高,对配电网规划影响显著,需对其出力的不确定性进行建模,以提升含DG的配电网规划的效益与实用性。建立了考虑出力不确定性的DG双层优化配置模型。通... 风电和光伏等间歇性分布式电源(distributed generation,DG)在配电网中接入比例不断提高,对配电网规划影响显著,需对其出力的不确定性进行建模,以提升含DG的配电网规划的效益与实用性。建立了考虑出力不确定性的DG双层优化配置模型。通过改进的条件深度卷积生成对抗网络模型对DG出力的不确定性进行建模,并在模型中加入月份标签信息以生成面向规划的风光联合出力场景;基于高斯混合模型确定月份标签对应的风光出力的上下限,从而刻画DG出力的不确定性范围。最后,考虑DG出力的运行边界,建立了社会综合成本最小化的DG双层优化配置模型。IEEE 33节点算例验证表明,提出的DG优化配置方案能够提升DG的接入容量,有效降低社会综合成本,提高配电网运行的经济性。 展开更多
关键词 不确定性 场景生成 条件深度卷积生成对抗网络 高斯混合模型 双层优化配置
在线阅读 下载PDF
多层感知器深度卷积生成对抗网络 被引量:7
3
作者 王格格 郭涛 李贵洋 《计算机科学》 CSCD 北大核心 2019年第9期243-249,共7页
生成对抗网络(GAN)是目前图像生成领域中一种新的、有效的训练生成模型方法。深度卷积生成对抗网络(DCGAN)作为GAN的一种延伸,将卷积神经网络引入到生成模型中进行无监督训练。但DCGAN的线性卷积层对于下层数据块是一个广义线性模型,其... 生成对抗网络(GAN)是目前图像生成领域中一种新的、有效的训练生成模型方法。深度卷积生成对抗网络(DCGAN)作为GAN的一种延伸,将卷积神经网络引入到生成模型中进行无监督训练。但DCGAN的线性卷积层对于下层数据块是一个广义线性模型,其抽象层次较低,生成的图像质量不高,并且在模型性能度量方面仅以主观的视觉感受来评判图像质量。针对以上问题,文中提出了一种多层感知器深度卷积生成对抗网络(MPDCGAN),采用多层感知器卷积层取代广义线性模型在输入数据上进行卷积,以捕获图像更深层次的特征,并采用定量评估方法Frechet Inception Distance(FID)衡量图像生成质量。在4种基准数据集上的实验结果表明,采用MPDCGAN生成的图像的 FID 值与图像质量呈负相关关系,且图像生成质量随着 FID 值的降低得到了进一步的提高。 展开更多
关键词 生成对抗网络 深度卷积生成对抗网络 多层感知器 FID
在线阅读 下载PDF
基于半监督深度卷积生成对抗网络的注塑瓶表面缺陷检测模型 被引量:3
4
作者 谢源 苗玉彬 +1 位作者 许凤麟 张铭 《计算机科学》 CSCD 北大核心 2020年第7期92-96,共5页
注塑瓶表面缺陷检测是注塑成型工艺流程中的重要环节,但生产中存在缺陷的注塑瓶样本数量相对匮乏,使得应用深度学习算法进行缺陷检测时容易产生过拟合现象。针对上述问题,文中提出并构建一种半监督(Semi-supervised)深度卷积生成对抗网... 注塑瓶表面缺陷检测是注塑成型工艺流程中的重要环节,但生产中存在缺陷的注塑瓶样本数量相对匮乏,使得应用深度学习算法进行缺陷检测时容易产生过拟合现象。针对上述问题,文中提出并构建一种半监督(Semi-supervised)深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network,DCGAN)模型。该模型首先使用HSV(Hue Saturation Va-lue)颜色空间转换与大津算法(Otsu)对原始注塑瓶图像进行预处理得到训练集;然后组合学习任务,使得DCGAN的无监督判别器与注塑瓶表面缺陷检测的监督分类器共享卷积层参数,同时修改损失函数,在DCGAN模型的Wasserstein距离中加入交叉熵;最后使用Adam优化器进行模型训练。实验结果表明,该模型能够准确分辨具有缺陷的注塑瓶样本,分类准确率达到98.65%。与传统的机器学习算法以及采用数据增强的卷积神经网络模型相比,所提模型的分类准确率更高,且较好地避免了过拟合现象,能满足注塑瓶生产中表面缺陷的自动检测需求。 展开更多
关键词 深度卷积生成对抗网络 半监督 小样本 缺陷检测 注塑瓶
在线阅读 下载PDF
基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别 被引量:28
5
作者 戴臣超 王洪元 +1 位作者 倪彤光 陈首兵 《计算机研究与发展》 EI CSCD 北大核心 2019年第8期1632-1641,共10页
行人重识别任务旨在识别不相交摄像头视图下的相同行人.这项任务极具挑战性,尤其是当数据集中每个行人仅仅有几张图片时.针对行人重识别数据集中行人图片数量不足的问题,提出一个从原始数据集中生成额外训练数据的方法.在这项工作之中存... 行人重识别任务旨在识别不相交摄像头视图下的相同行人.这项任务极具挑战性,尤其是当数据集中每个行人仅仅有几张图片时.针对行人重识别数据集中行人图片数量不足的问题,提出一个从原始数据集中生成额外训练数据的方法.在这项工作之中存在2个挑战:1)如何从原始数据集之中获取更多的训练数据;2)如何处理这些新生成的训练数据.使用深度卷积生成对抗网络来生成额外的无标签行人图片,并采用标签平滑正则化来处理这些新生成的无标签行人图片.为了进一步提升行人重识别准确度,提出了一种新的无监督重排序框架.此框架既不需要为每组图像对重新计算新的排序列表,也不需要任何人工交互或标签信息.在Market-1501,CUHK03和DukeMTMC-reID数据集上的实验验证了所提方法的有效性. 展开更多
关键词 行人重识别 深度卷积生成对抗网络 重排序 标签平滑正则化 无监督
在线阅读 下载PDF
基于深度卷积生成对抗网络的半生成式视频隐写方案
6
作者 林洋平 刘佳 +2 位作者 陈培 张明书 杨晓元 《计算机应用》 CSCD 北大核心 2023年第1期169-175,共7页
生成式隐写通过生成足够自然或真实的含密样本来隐藏秘密消息,是信息隐藏方向的研究热点,但目前在视频隐写领域的研究还比较少。结合数字化卡登格的思想,提出一种基于深度卷积生成对抗网络(DCGAN)的半生成式视频隐写方案。该方案中,设... 生成式隐写通过生成足够自然或真实的含密样本来隐藏秘密消息,是信息隐藏方向的研究热点,但目前在视频隐写领域的研究还比较少。结合数字化卡登格的思想,提出一种基于深度卷积生成对抗网络(DCGAN)的半生成式视频隐写方案。该方案中,设计了基于DCGAN的双流视频生成网络,用来生成视频的动态前景、静态后景与时空掩模三个部分,并以随机噪声驱动生成不同的视频。方案中的发送方可设定隐写阈值,在掩模中自适应地生成数字化卡登格,并将其作为隐写与提取的密钥;同时以前景作为载体,实现信息的最优嵌入。实验结果表明,该方案生成的含密视频具有良好的视觉质量,Frechet Inception距离(FID)值为90,且嵌入容量优于现有的生成式隐写方案,最高可达0.11 bpp,能够更高效地传输秘密消息。 展开更多
关键词 视频隐写 生成 深度学习 深度卷积生成对抗网络 对抗性训练 数字化卡登格
在线阅读 下载PDF
基于深度卷积生成对抗网络的航拍图像去厚云方法 被引量:8
7
作者 李从利 张思雨 +1 位作者 韦哲 薛松 《兵工学报》 EI CAS CSCD 北大核心 2019年第7期1434-1442,共9页
针对航空图像中厚云去除的难题,提出一种基于深度卷积生成对抗网络的航拍图像去厚云方法。将图像中被云遮挡的区域看作图像修复问题中的缺失部分,利用卷积神经网络的对抗学习补偿缺失信息。设计了包括生成器-鉴别器的深度卷积生成对抗... 针对航空图像中厚云去除的难题,提出一种基于深度卷积生成对抗网络的航拍图像去厚云方法。将图像中被云遮挡的区域看作图像修复问题中的缺失部分,利用卷积神经网络的对抗学习补偿缺失信息。设计了包括生成器-鉴别器的深度卷积生成对抗网络模型。生成器采用编码器-解码器结构,构建了包含重建损失、对抗损失和总变差损失的联合损失函数,不断训练以生成云区的预测图像;鉴别器衡量生成图像的真实性,以对抗损失作为损失函数。通过不断迭代联合优化生成器和鉴别器,以使网络预测性能提高。引入泊松图像编辑平滑边界,以降低颜色差异和边界伪迹的影响。在模拟含云图像与真实含云图像上实验结果表明,所提出方法的去云效果在峰值信噪比、结构相似性、自然图像无参考质量评价算法及其改进算法指标优于经典方法,更符合人眼主观感受,且具有较小的运算复杂度。 展开更多
关键词 航拍图像 厚云去除 深度卷积生成对抗网络 泊松图像编辑
在线阅读 下载PDF
基于改进深度卷积生成对抗网络的入侵检测方法 被引量:17
8
作者 杨锦溦 杨宇 +1 位作者 姚铖鹏 尹坤 《科学技术与工程》 北大核心 2022年第8期3209-3215,共7页
针对入侵检测系统因采用的网络攻击样本具有不平衡性而导致检测结果出现较大偏差的问题,提出一种将改进后的深度卷积生成对抗网络(deep convolution generation adversarial network,DCGAN)与深度神经网络(deep neural network,DNN)相... 针对入侵检测系统因采用的网络攻击样本具有不平衡性而导致检测结果出现较大偏差的问题,提出一种将改进后的深度卷积生成对抗网络(deep convolution generation adversarial network,DCGAN)与深度神经网络(deep neural network,DNN)相结合的入侵检测模型(DCGAN-DNN),深度卷积生成对抗网络能够通过学习已知攻击样本数据的内在特征分布生成新的攻击样本,并对深度卷积生成对抗网络中生成网络所用的线性整流(rectified linear unit,ReLU)激活函数作出改进,改善了均值偏移和神经元坏死的问题,提升了训练稳定性。使用CIC-IDS-2017数据集作为实验样本对模型进行评估,与传统的过采样方法相比DCGAN-DNN入侵检测模型对于未知攻击和少数攻击类型具有较高检测率。 展开更多
关键词 网络安全态势感知 入侵检测 深度卷积生成对抗网络(DCGAN) 深度神经网络(DNN)
在线阅读 下载PDF
多分类深度卷积生成对抗网络的皮带撕裂检测 被引量:6
9
作者 孟晓娟 张月琴 +1 位作者 郝晓丽 吕进来 《计算机工程与应用》 CSCD 北大核心 2021年第16期269-275,共7页
皮带撕裂是皮带机出现的最常见故障之一,直接影响皮带机的安全稳定运行。针对现有的方法大多仅对一种破损类型进行检测的情况,设计了一种基于双时间尺度的多分类深度卷积生成对抗网络的皮带撕裂检测方法。利用CCD相机捕获皮带表面图像,... 皮带撕裂是皮带机出现的最常见故障之一,直接影响皮带机的安全稳定运行。针对现有的方法大多仅对一种破损类型进行检测的情况,设计了一种基于双时间尺度的多分类深度卷积生成对抗网络的皮带撕裂检测方法。利用CCD相机捕获皮带表面图像,并经数据传输子系统将图像传送到决策子系统;在决策子系统的处理模块,通过去掉生成器的批量归一化操作,由多分类深度卷积生成对抗网络快速得到破损位置和类型;引入双时间尺度更新规则使得模型更快地收敛。实验结果表明,在MS COCO数据集上,多类别平均精确率为95.7%;在皮带图像数据集上,多类别平均精确率为96.9%。 展开更多
关键词 皮带机 双时间尺度更新规则 多分类 深度卷积生成对抗网络 皮带撕裂检测
在线阅读 下载PDF
基于改进Fisher准则的深度卷积生成对抗网络算法 被引量:3
10
作者 张浩 齐光磊 +1 位作者 侯小刚 郑凯梅 《光学精密工程》 EI CAS CSCD 北大核心 2022年第24期3239-3249,共11页
针对当训练样本量不足或者迭代次数降低时生成图像质量急剧下降的问题,提出了一种基于改进Fisher准则的深度卷积生成对抗网络算法(FDCGAN,Deep Convolutional Generative Adversarial Network algorithm based on improved Fisher’s cr... 针对当训练样本量不足或者迭代次数降低时生成图像质量急剧下降的问题,提出了一种基于改进Fisher准则的深度卷积生成对抗网络算法(FDCGAN,Deep Convolutional Generative Adversarial Network algorithm based on improved Fisher’s criterion)。该方法在判别模型中添加线性层,用来提取类别信息。在反向传播中采用基于Fisher的约束准则,结合标签和类别信息,在权值的迭代调整时既考虑误差的最小化,又同时让样本保持类内距离小、类间距离大,从而使权值能更加快速地逼近最优值。通过与最新不同的6个网络模型进行对比实验,FDCGAN模型在FID指标上均取得了较好的效果。此外,通过将该方法运用到目前先进模型上进行泛化测试,实验结果均取得较理想的效果。 展开更多
关键词 深度卷积生成对抗网络 FISHER准则 反向传播算法 FID评价指标
在线阅读 下载PDF
基于深度卷积生成对抗网络的图像识别算法 被引量:7
11
作者 刘恋秋 《液晶与显示》 CAS CSCD 北大核心 2020年第4期383-388,共6页
针对传统深度卷积生成网络收敛速度慢、稳定性较差的问题,本文在传统深度卷积生成对抗网络的基础上,提出了深度卷积生成对抗网络的优化算法。首先在预处理部分,融合了Canny算子和Prewitt算子的多个方向的卷积核来初始化输入图片参数,同... 针对传统深度卷积生成网络收敛速度慢、稳定性较差的问题,本文在传统深度卷积生成对抗网络的基础上,提出了深度卷积生成对抗网络的优化算法。首先在预处理部分,融合了Canny算子和Prewitt算子的多个方向的卷积核来初始化输入图片参数,同时训练模块。为了减少训练时间,将训练分为3个阶段,每个阶段都采用不同的损失函数,从而提升网络的收敛速度及识别效果。最后再将训练后的判别网络中的卷积神经网络用来提取图像特征。LFW和CIFAR-100的实验证明,本文提出的算法具有很高的可行性和有效性,比传统生成对抗网络、CNN等图像识别具有更高的识别成功率,达到89.5%,为生成对抗网络在计算机视觉领域的应用提供了有益的参考。 展开更多
关键词 生成对抗网络 深度卷积 特征提取 计算机视觉
在线阅读 下载PDF
基于深度卷积生成对抗网络的地震初至拾取 被引量:14
12
作者 周创 居兴国 +1 位作者 李子昂 刘小民 《石油物探》 EI CSCD 北大核心 2020年第5期795-803,共9页
地震记录初至拾取质量往往受限于地震数据的复杂性,在陆地和浅海地震数据中尤为明显。为了更高效地拾取初至,提出了一种基于深度卷积生成对抗网络(DCGAN)的地震数据初至拾取方法,其关键在于构建一个适用于地震数据初至拾取的DCGAN,包含... 地震记录初至拾取质量往往受限于地震数据的复杂性,在陆地和浅海地震数据中尤为明显。为了更高效地拾取初至,提出了一种基于深度卷积生成对抗网络(DCGAN)的地震数据初至拾取方法,其关键在于构建一个适用于地震数据初至拾取的DCGAN,包含生成器与判别器两部分。生成器由一个全卷积神经网络(FCN)构成,用于学习地震炮集数据到初至波之间的特征映射;判别器由一个卷积神经网络(CNN)构成,用于辅助生成器训练。基于DCGAN的初至拾取方法的实现分为三步:数据预处理、网络训练和预测拾取。通过对不同卷积层数的网络结构的对比分析,确定了一个最优的DCGAN结构。一旦DCGAN的训练完成,利用其完成一炮地震数据的初至拾取仅需几秒的时间。将DCGAN方法应用于实际数据初至拾取并与现有初至拾取方法(如长短时窗比(STA/LTA)法和峰度赤池信息量准则(AIC)法)的拾取结果相比较,结果表明基于DCGAN的初至拾取方法的精度更高,能满足生产需要。 展开更多
关键词 生成对抗网络 卷积神经网络 深度学习 地震数据 初至拾取 网络结构 卷积神经网络 网络训练
在线阅读 下载PDF
基于条件深度卷积生成对抗网络的图像识别方法 被引量:153
13
作者 唐贤伦 杜一铭 +2 位作者 刘雨微 李佳歆 马艺玮 《自动化学报》 EI CSCD 北大核心 2018年第5期855-864,共10页
生成对抗网络(Generative adversarial networks,GAN)是目前热门的生成式模型.深度卷积生成对抗网络(Deep convolutional GAN,DCGAN)在传统生成对抗网络的基础上,引入卷积神经网络(Convolutional neural networks,CNN)进行无监督训练;... 生成对抗网络(Generative adversarial networks,GAN)是目前热门的生成式模型.深度卷积生成对抗网络(Deep convolutional GAN,DCGAN)在传统生成对抗网络的基础上,引入卷积神经网络(Convolutional neural networks,CNN)进行无监督训练;条件生成对抗网络(Conditional GAN,CGAN)在GAN的基础上加上条件扩展为条件模型.结合深度卷积生成对抗网络和条件生成对抗网络的优点,建立条件深度卷积生成对抗网络模型(Conditional-DCGAN,C-DCGAN),利用卷积神经网络强大的特征提取能力,在此基础上加以条件辅助生成样本,将此结构再进行优化改进并用于图像识别中,实验结果表明,该方法能有效提高图像的识别准确率. 展开更多
关键词 生成对抗网络 卷积神经网络 条件模型 特征提取 图像识别
在线阅读 下载PDF
基于条件深度卷积生成对抗网络的新能源发电场景数据迁移方法 被引量:26
14
作者 张承圣 邵振国 +2 位作者 陈飞雄 江昌旭 冯健冰 《电网技术》 EI CSCD 北大核心 2022年第6期2182-2189,共8页
针对在历史数据缺失的情况下,现有的新能源发电场景生成方法存在精度较低甚至失效的问题,提出一种基于条件深度卷积生成对抗网络(conditional deep convolutions generative adversarial network,C-DCGAN)的新能源发电场景数据迁移方法... 针对在历史数据缺失的情况下,现有的新能源发电场景生成方法存在精度较低甚至失效的问题,提出一种基于条件深度卷积生成对抗网络(conditional deep convolutions generative adversarial network,C-DCGAN)的新能源发电场景数据迁移方法。该方法以历史数据大规模缺失的新能源电站为目标电站,以历史数据完整的邻近新能源电站为源电站,通过生成对抗网络模型学习源电站与目标电站之间的场景数据映射关系,进而根据源电站场景数据,生成目标电站场景数据,且所生成的数据符合真实场景数据分布规律。采用实际风电数据集对所提算法和模型进行验证,并应用若干统计学指标,分别对文中模型与条件生成对抗网络(conditional generative adversarial network,CGAN)模型所迁移生成的数据进行对比评估,结果表明所提算法与模型能够更加准确地生成新能源发电场景数据。 展开更多
关键词 新能源发电 不确定性 数据迁移 生成对抗网络 深度卷积神经网络
在线阅读 下载PDF
基于深度卷积生成对抗网络的花朵图像增强与分类 被引量:13
15
作者 杨旺功 淮永建 《计算机科学》 CSCD 北大核心 2020年第6期176-179,共4页
为了提高花朵图像识别与分类的准确率,采用基于深度卷积生成对抗网络的算法来完成花朵图像的识别与分类。为了保证花朵图像在卷积过程中的特征完整性,将不同尺寸的真实花朵图像进行定量平均分块,忽略分块尺寸的大小,保证分块数量相等,... 为了提高花朵图像识别与分类的准确率,采用基于深度卷积生成对抗网络的算法来完成花朵图像的识别与分类。为了保证花朵图像在卷积过程中的特征完整性,将不同尺寸的真实花朵图像进行定量平均分块,忽略分块尺寸的大小,保证分块数量相等,然后对分块的图像进行深度卷积池化增强,增强方法为最大值增强,并对噪声进行最大值池化操作,然后将两者进行对抗判别,运用交叉熵误差对价值函数进行评估,求解花朵图像识别与分类的结果。文中分别对花朵图像增强、同类花朵图像识别和不同类花朵图像分类分别进行了实例仿真,实验结果表明,所提算法在花朵图像分类正确率方面的优势明显且稳定性好。 展开更多
关键词 深度卷积 对抗网络 花朵图像 最大值池化 价值函数
在线阅读 下载PDF
基于条件深度卷积生成对抗网络的视网膜血管分割 被引量:11
16
作者 蒋芸 谭宁 《自动化学报》 EI CAS CSCD 北大核心 2021年第1期136-147,共12页
视网膜血管的分割帮助医生对眼底疾病进行诊断有着重要的意义.但现有方法对视网膜血管的分割存在着各种问题,例如对血管分割不足,抗噪声干扰能力弱,对病灶敏感等.针对现有血管分割方法的缺陷,本文提出使用条件深度卷积生成对抗网络的方... 视网膜血管的分割帮助医生对眼底疾病进行诊断有着重要的意义.但现有方法对视网膜血管的分割存在着各种问题,例如对血管分割不足,抗噪声干扰能力弱,对病灶敏感等.针对现有血管分割方法的缺陷,本文提出使用条件深度卷积生成对抗网络的方法对视网膜血管进行分割.我们主要对生成器的网络结构进行了改进,在卷积层引入残差模块进行差值学习使得网络结构对输出的改变变得敏感,从而更好地对生成器的权重进行调整.为了降低参数数目和计算,在使用大卷积核之前使用小卷积核对输入特征图的通道数进行减半处理.通过使用U型网络的思想将卷积层的输出与反卷积层的输出进行连接从而避免低级信息共享.通过在DRIVE和STARE数据集上对本文的方法进行了验证,其分割准确率分别为96.08%、97.71%,灵敏性分别达到了82.74%、85.34%,F度量分别达到了82.08%和85.02%,灵敏度比R2U-Net的灵敏度分别高了4.82%,2.4%. 展开更多
关键词 生成对抗网络 残差网络 视网膜血管分割 条件模型 卷积神经网络
在线阅读 下载PDF
基于带梯度惩罚深度卷积生成对抗网络的页岩三维数字岩心重构方法 被引量:2
17
作者 王先武 张挺 +1 位作者 吉欣 杜奕 《计算机应用》 CSCD 北大核心 2021年第6期1805-1811,共7页
针对传统数字岩心重构技术存在的成本高昂、复用性差和重构质量低等问题,提出了一种基于带梯度惩罚深度卷积生成对抗网络(DCGAN-GP)的三维页岩数字岩心重构方法。首先,利用神经网络参数来描述页岩训练图像的分布概率,并完成训练图像的... 针对传统数字岩心重构技术存在的成本高昂、复用性差和重构质量低等问题,提出了一种基于带梯度惩罚深度卷积生成对抗网络(DCGAN-GP)的三维页岩数字岩心重构方法。首先,利用神经网络参数来描述页岩训练图像的分布概率,并完成训练图像的特征提取;其次,保存训练后的网络参数;最后,利用生成器重构出页岩三维数字岩心。实验结果表明,相较于经典的数字岩心重构技术得到的图像,DCGAN-GP得到的图像在孔隙度、变差函数和孔隙大小及分布特征上都更接近训练图像,而且DCGAN-GP的CPU使用率不到经典算法的一半,内存峰值仅有7.1 GB,重构时间达到了每次42 s,体现出模型重构质量高、效率高的特点。 展开更多
关键词 重构 数字岩心 生成对抗网络 深度卷积 梯度惩罚
在线阅读 下载PDF
基于一维深度卷积生成对抗网络的钢轨波磨识别方法 被引量:2
18
作者 谢烨 赵闻强 +1 位作者 杨红运 包学海 《铁道建筑》 北大核心 2022年第12期62-66,71,共6页
实际工程中钢轨波磨数据难以大量获取,无法构建庞大数据集进行智能诊断模型训练。针对这一问题,本文提出了一种基于一维深度卷积生成对抗网络的钢轨波磨识别方法。首先使用一维生成对抗网络生成与实际波磨振动信号结构相同的伪样本,对... 实际工程中钢轨波磨数据难以大量获取,无法构建庞大数据集进行智能诊断模型训练。针对这一问题,本文提出了一种基于一维深度卷积生成对抗网络的钢轨波磨识别方法。首先使用一维生成对抗网络生成与实际波磨振动信号结构相同的伪样本,对样本信号的数据集进行扩充;然后提取波磨振动信号的时域统计指标作为波磨数据的特征;最后使用分类算法对不同特征的波磨振动数据进行学习与分类。使用实测钢轨波磨振动数据进行试验验证,结果表明:利用本文方法所生成的伪样本数据,在时域、频域以及时域特征指标方面均与真实样本数据基本一致;使用KNN、SVM和DT三种分类模型对波磨数据的特征进行分类和对比,均可较好地进行波磨识别。 展开更多
关键词 钢轨波磨 伪样本 试验研究 一维深度卷积 生成对抗网络 特征指标 平均分类准确率
在线阅读 下载PDF
基于生成对抗网络和卷积神经网络的高速铁路地震预警干扰信号识别方法
19
作者 宋晋东 栾世成 +7 位作者 李山有 马强 孙文韬 刘赫奕 周学影 姚鹍鹏 黄鹏杰 朱景宝 《中国铁道科学》 北大核心 2025年第1期225-232,共8页
为提升高速铁路地震预警系统中地震事件识别的可靠性,提出基于生成对抗网络(GAN)和卷积神经网络(CNN)的高速铁路地震预警干扰信号识别方法。首先,通过GAN对打夯干扰信号进行数据增强,以实现数据平衡;其次,设计并构建GAN-CNN打夯干扰信... 为提升高速铁路地震预警系统中地震事件识别的可靠性,提出基于生成对抗网络(GAN)和卷积神经网络(CNN)的高速铁路地震预警干扰信号识别方法。首先,通过GAN对打夯干扰信号进行数据增强,以实现数据平衡;其次,设计并构建GAN-CNN打夯干扰信号识别模型,并对其进行训练和测试;最后,通过对比试验,验证该模型在干扰信号识别中的有效性和准确性。结果表明:与未使用GAN进行数据增强的情况相比,所提方法识别打夯干扰信号和地震事件信号的准确率分别为99.60%和100%,性能显著提升;此外,GANCNN模型的交并比、准确率、召回率和综合能力评价指标也得到提高。该方法可为高速铁路地震预警干扰信号识别提供参考。 展开更多
关键词 地震预警 高速铁路 卷积神经网络 生成对抗网络 打夯干扰信号
在线阅读 下载PDF
基于双重时间卷积网络与生成对抗网络的时序序列异常检测
20
作者 王红霞 牛宇浩 《计量学报》 北大核心 2025年第7期1030-1040,共11页
随着数字制造化产业的发展,数据安全检测、系统监控分析等应用场景中数据量的不断增加,对于数据异常检测的要求日益提高。提出了一种基于双重时间卷积网络与生成对抗网络(GAN)的异常检测(MdtGAN)算法。首先通过生成对抗网络的设计策略... 随着数字制造化产业的发展,数据安全检测、系统监控分析等应用场景中数据量的不断增加,对于数据异常检测的要求日益提高。提出了一种基于双重时间卷积网络与生成对抗网络(GAN)的异常检测(MdtGAN)算法。首先通过生成对抗网络的设计策略构建其基本结构;其次在全局和局部时间卷积网络(GaL-TCN)生成器中通过设计双重时间卷积网络对时间序列进行历史信息处理,其中的注意力机制和单层Transformer编码器使其能够快速地执行知识推理,实现对于时间序列的分布预测使其能够生成符合真实数据分布的时间序列;最后提出基于极值理论的动态阈值设定方法,减少了需要手动调节的参数量以及对于先验知识的需要。实验结果表明,在4个公开数据集上MdtGAN与近几年优秀的基准方法相比,将F1分数平均提高了1.27%,训练时间减少了70.69%,为无监督异常检测提供了一种新的解决方案。 展开更多
关键词 数据处理 生成对抗网络 时间序列 异常检测 双重时间卷积网络 注意力机制 动态阈值
在线阅读 下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部