期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于深度前馈神经网络的致密砂岩储层孔隙度预测 被引量:7
1
作者 李奎周 王团 +4 位作者 赵海波 唐晓花 田得光 郑绪瑭 高天宇 《大庆石油地质与开发》 CAS 北大核心 2023年第5期140-146,共7页
致密砂岩储层具有低孔低渗特点,由孔隙度变化引起的弹性参数和地震响应特征变化较弱,为解决常规的基于岩石物理关系线性映射孔隙度预测或者基于多属性融合的概率映射孔隙度预测方法难以表征孔隙度与地震属性间复杂非线性关系的问题,提... 致密砂岩储层具有低孔低渗特点,由孔隙度变化引起的弹性参数和地震响应特征变化较弱,为解决常规的基于岩石物理关系线性映射孔隙度预测或者基于多属性融合的概率映射孔隙度预测方法难以表征孔隙度与地震属性间复杂非线性关系的问题,提出了基于深度前馈神经网络的孔隙度预测方法。该方法首先以测井计算的有效孔隙度曲线作为训练目标,以井旁的地震数据属性和反演弹性属性作为训练特征构成训练样本;其次通过优选评价确定复杂结构深度前馈神经网络模型参数,建立井旁地震数据与孔隙度之间的非线性映射关系;最后将训练优良的深度网络模型应用到整个数据体,得到有效孔隙度预测成果,进而实现致密砂岩优质储层定量表征。松辽盆地北部三角洲前缘沉积的致密砂岩应用实例表明,基于深度学习的孔隙度预测结果与井资料吻合较好,相对误差为8.1%,较常规基于岩石物理关系的线性映射孔隙度预测方法误差减小8.2%;证明了该方法对致密砂岩储层孔隙度预测的有效性。研究成果可为井位部署及方案优化设计提供理论指导与技术参考。 展开更多
关键词 致密砂岩储层 孔隙度预测 深度前馈神经网络 非线性映射
在线阅读 下载PDF
基于深度前馈神经网络方法的横波速度预测 被引量:6
2
作者 王树华 杨国杰 穆星 《油气地质与采收率》 CAS CSCD 北大核心 2022年第1期80-89,共10页
针对横波速度预测问题,在分析经验公式法和岩石物理建模法优缺点的基础上,结合横波速度预测原理,提出基于深度前馈神经网络方法(DFNN)进行横波速度的预测。研究从纵、横波速度关系入手,详细阐述了DFNN方法应用于横波速度预测的可行性,... 针对横波速度预测问题,在分析经验公式法和岩石物理建模法优缺点的基础上,结合横波速度预测原理,提出基于深度前馈神经网络方法(DFNN)进行横波速度的预测。研究从纵、横波速度关系入手,详细阐述了DFNN方法应用于横波速度预测的可行性,并介绍了该深度学习方法的基本原理;选择声波时差、密度、中子孔隙度、泥质含量、孔隙度5个储层参数与横波速度进行深度神经网络训练,建立可靠的横波速度预测模型。将该模型应用于不同研究区的横波速度预测,结果表明基于DFNN方法预测横波速度能够有效提高预测的精度和效率,适用范围广,可以为叠前AVO分析、叠前反演提供可靠的横波数据,具有较高的实际应用价值和推广意义。 展开更多
关键词 横波速度预测 深度前馈神经网络方法 深度学习 储层参数 预测模型
在线阅读 下载PDF
基于麻雀搜索算法结合深度前馈神经网络的近红外模型转移方法研究 被引量:5
3
作者 刘鑫鹏 秦玉华 +2 位作者 张凤梅 蒋薇 尹志豇 《分析测试学报》 CAS CSCD 北大核心 2022年第11期1621-1628,共8页
该文提出了一种基于麻雀搜索算法结合深度前馈神经网络(SSA-DFN)的近红外光谱模型转移方法。使用深度前馈神经网络拟合不同仪器采集到的光谱之间的非线性函数映射,并将麻雀搜索算法用于网络各层连接权值和阈值的初始化,通过种群中个体... 该文提出了一种基于麻雀搜索算法结合深度前馈神经网络(SSA-DFN)的近红外光谱模型转移方法。使用深度前馈神经网络拟合不同仪器采集到的光谱之间的非线性函数映射,并将麻雀搜索算法用于网络各层连接权值和阈值的初始化,通过种群中个体位置的迭代更新,求得连接权值和阈值的最优初始值;通过多次调整深度前馈神经网络模型的超参数,使网络拟合效果趋于最优,最终确定转移函数。为验证方法的有效性,分别从烟叶近红外光谱谱图、主成分投影和预测结果的角度,将SSA-DFN方法与分段直接校正算法(PDS)、典型相关性分析算法(CCA)转移前后的效果进行了对比。结果表明SSA-DFN方法转移后的从机光谱与原主机光谱重合度最高,转移后主、从机总糖、烟碱含量的预测结果差异不显著,预测平均误差从8.32%、9.15%分别降至4.65%、4.82%,预测均方根误差(RMSEP)和决定系数(R^(2))等指标均优于PDS和CCA,取得了最佳的转移效果,可满足企业需求。结果表明该方法是一种有效的模型转移方法。 展开更多
关键词 模型转移 麻雀搜索算法 深度前馈神经网络 近红外光谱
在线阅读 下载PDF
基于自适应卡尔曼滤波和深度前馈神经网络的氚源项反演
4
作者 张金龙 崔威杰 栗再新 《辐射研究与辐射工艺学报》 CAS CSCD 2023年第6期79-86,共8页
氘氚聚变反应被认为是能够最先实现商业发电的聚变反应,但氚的使用也带来了放射性安全问题。为探究适用于聚变堆事故后的大气释放氚源项反演的计算方法,本研究将自适应卡尔曼滤波与深度前馈神经网络相结合,建立聚变堆事故后的氚释放源... 氘氚聚变反应被认为是能够最先实现商业发电的聚变反应,但氚的使用也带来了放射性安全问题。为探究适用于聚变堆事故后的大气释放氚源项反演的计算方法,本研究将自适应卡尔曼滤波与深度前馈神经网络相结合,建立聚变堆事故后的氚释放源项估计算法,对氚的释放高度及释放率进行反演。对神经网络使用滤波前后的观测值作为输入数据时的预测源强进行分析。结果表明,滤波能有效降低神经网络的预测误差。当监测数据误差为20%时,释放高度反演相对误差均值约为3%,释放率反演相对误差均值约为4%。 展开更多
关键词 自适应卡尔曼滤波 深度前馈神经网络 氚源项反演
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部